Теория вероятностей

Задача № 16160

150р.
Цена: 150р.

Дифференциальная функция распределения случайной величины имеет вид f(x) = Ag(x). Найти параметр А, М(Х), D(Х), σ(Х), М0, Мe. Построить графики f(x) и F(x), рассматривая не менее пяти точек на интервале. Найти вероятность того, что отклонение от математического ожидания не более трех среднеквадратических отклонений. $$g(x)=\frac{1}{x^4},\ х\ge 2$$

Задача № 16140

75р.
Цена: 75р.

В урне 7 белых и 3 чёрных шара. Из неё 3 раза подряд извлекают шар, и каждый раз возвращают в урну. Приняв за СВ Х – число извлечённых белых шаров построить:
1) закон распределения;
2) многоугольник распределения СВ Х;
3) найти M(X) и D(X).

Задача № 16138

75р.
Цена: 75р.

Дискретная случайная величина Х может принимать только два значения: х1 и х2, причем х1 < х2. Известны вероятность р1 возможного значения х1, математическое ожидание М(Х) и дисперсия D(Х). Найти закон распределения этой случайной величины.
р1 = 0,9 М(Х) = 3,1; D(Х) = 0,09

Задача № 15916

100р.
Цена: 100р.

Испытуемый прибор состоит из трех малонадежных элементов. Отказы элементов за некоторое время Т независимы, а их вероятность равны соответственно Р1, Р2, Р3. Найти закон распределения, математическое ожидание, моду, дисперсию числа не отказавших элементов. Построить функцию распределения. Определить вероятности того, что отказавших элементов будет не более n.
Р1 = 0,06; Р2 = 0,03; Р3 = 0,04; n = 1.

Задача № 15914

50р.
Цена: 50р.

Среди 10 деталей имеется 2 окрашенных. Вероятность того, что окрашенная деталь стандартная, равна 0,7, а некрашеная − 0,9. Наудачу извлечена деталь, оказавшаяся стандартной. Найти вероятность того, что извлеченная деталь окрашена.

Задача № 15912

50р.
Цена: 50р.




Задача № 15910

30р.
Цена: 30р.

В лифт 8-этажного дома на первом этаже вошли 5 человек. Предположим, что каждый из них с равной вероятностью может выйти на любом из этажей, начиная со второго. Найти вероятность того, что все пятеро выйдут на разных этажах.

Задача № 15908

50р.
Цена: 50р.

Рабочий изготовил 4 детали. Пусть событие Ai − заключается в том. что i - я изготовленная им деталь имеет дефект. Записать событие, заключающееся в том, что:
a) ни одна из деталей не имеет дефектов;
b) хотя бы одна деталь имеет дефект;
c) только одна деталь имеет дефект;
d) не более двух деталей имеют дефекты;
e) по крайней мере две детали не имеют дефектов;
f) только две детали дефектны.

Задача № 14476

100р.
Цена: 100р.

Дан закон распределения случайного вектора:

X Y
0 0,5 2
0 0,3 0 0,1
2 0,5 0,1 a

Найти константу a. Определить, являются ли случайные величины X и Y зависимыми. Найти функцию распределения и условную вероятность P(X=0|Y=2).

Задача № 14470

300р.
Цена: 300р.

Дана плотность распределения случайного вектора
$$f(x,y)=\left\{\begin{array}{ll}
C(x+2xy+2y^2), & x, y \in [0,1] \\
0, & x, y \notin [0, 1]
\end{array} \right. $$
Найти константу С и вероятность того, что случайный вектор (X, Y) принадлежит треугольнику с вершинами в точках (0, 0), (1, 2), (0, 1). Являются ли X и Y зависимыми величинами? Найти координаты центра рассеивания и функцию распределения.

Задача № 14460

50р.
Цена: 50р.

Станок изготавливает детали со стандартным отклонением в длине σ = 0,1 см. Средняя длина детали m = 3 см. В случайно выборке деталей объёма n = 15 оказалось, что средняя длина детали составляет 2,9 см. Надо ли ремонтировать станок, если доверительная вероятность β = 95%?

Задача № 14458

100р.
Цена: 100р.

Дана функция распределения случайного вектора
$$F(x,y)=\left\{\begin{array}{ll}
\frac 12(x^2y+xy^2), & x \in [0,1], y \in [0, 1] \\
0, & x \notin [0, 1], y \notin [0, 1]
\end{array} \right. $$
Найдите плотность распределения. Найти плотности отдельных величин $f_X(x)$ и $f_Y(y)$. Определить, являются ли $X$ и $Y$ зависимыми величинами.

Задача № 14332

50р.
Цена: 50р.

В ящике находится 15 деталей, из них 10 окрашенных. Сборщик наудачу извлекает из ящика 4 детали. Найти закон распределения и математическое ожидание для количества извлечённых окрашенных деталей.

Задача № 14228

100р.
Цена: 100р.

Найдите $K$ и функцию распределения $F(x)$ непрерывной случайной величины $X$, плотность распределения $f(x)$ которой задана следующей формулой:
$$f(x)=\left \{
\begin{array} {ll}
K(1+x), & x \in (0, 2] \\
0, & x \notin (0, 2]
\end{array} \right. $$
Найдите $M(X), D(X), \sigma(X)$

Задача № 14226

75р.
Цена: 75р.

Найдите функцию распределения F(x) и изобразите многоугольник распределения дискретной случайной величины X, распределение вероятностей которой задано следующей таблицей:

X 0,2 0,3 0,5 0,6 0,7
P(X) 0,1 0,2 0,15 0,25

Найдите M(X), D(X), σ(X).

Задача № 14224

30р.
Цена: 30р.

В партии готовой продукции, состоящей из 20 изделий, при проверке выявили 4 бракованных. Найдите вероятность того, что при случайном выборе 4-х изделий число бракованных и не бракованных изделий окажется одинаковым.

Задача № 14222

10р.
Цена: 10р.

Устройство состоит из 5 элементов, два из которых изношены. При включении устройства включаются случайным образом два элемента. Найдите вероятность того, что включёнными окажутся неизношенные элементы.

Задача № 14220

10р.
Цена: 10р.

Два снайпера стреляют по мишени. Вероятность того, что первый снайпер поразит мишень с одного выстрела равна 0,75. Для второго снайпера вероятность попадания составляет 0,95. Найдите вероятность поражения мишени, если каждый из снайперов сделает по выстрелу.

Задача № 14218

10р.
Цена: 10р.

Вероятность хотя бы одного попадания в цель при четырёх выстрелах равна 0,9984. Найдите вероятность попадания в цель при одном выстреле.

Задача № 14216

30р.
Цена: 30р.

В больницу поступают в среднем 50% пациентов с заболеванием A, 30% с заболеванием B и 20% с заболеванием C. Вероятности полного выздоровления после каждого заболевания соответственно равны 0,6, 0,85 и 0,75. Найдите вероятность того, что пациент, выписанный из больницы здоровым, страдал заболеванием C.

Страницы

Подписка на Теория вероятностей