Теория вероятностей

Задача № 16978

50₽
Цена: 50₽

Из 500 компьютеров 180 принадлежат к 1 партии, 170 – ко второй партии, остальные к третьей. В первой партии 3% брака, во второй – 2%, в третьей – 6%. Случайно выбирается один компьютер. Определить вероятность того, что выбранный компьютер – бракованный. Округлите полученный ответ до десятитысячных.

Задача № 16946

100₽
Цена: 100₽

Задана плотность совместного распределения непрерывной двумерной случайной величины $(\xi,\eta)$: $$p_{\xi \eta} (x,y)=\left\{\begin{array}{ll}
0, (x,y) \notin D, \\
Ax, (x,y) \in D,
\end{array}\right.$$
где область D является треугольником с вершинами в точках (0;0),(0;3) и (-3;0).
Найдите:

Задача № 16945

100₽
Цена: 100₽

Сколько приборов надо взять для эксплуатации, чтобы с вероятностью 0,97 доля надёжных приборов отличалась по абсолютной величине от 0,98 не более, чем на 0,1. Известно, что каждый прибор имеет надёжность 0,9 (использовать неравенство Чебышева).

Задача № 16823

30₽
Цена: 30₽

В доме отдыха 40% отдыхающих любят ловить рыбу, остальные охотятся. Любители ловить рыбу с вероятностью 0,8 приносят добычу, а охотники – 0,6. Какова вероятность, что будет какая-нибудь добыча?

Задача № 16822

30₽
Цена: 30₽

Легковые и грузовые машины проезжают по шоссе около бензоколонки, легковых в 2 раза больше, чем грузовых. Вероятность легковой машины подъехать к бензоколонке равна 0,7, а грузовой – 0,8. Машина подъехала к бензоколонке. Какова вероятность, что это легковая машина?

Задача № 16801

75₽
Цена: 75₽

Дискретная двумерная случайная величина (ξ, η) задана рядом распределения:

ξ \ η 10 14 18
1 0,25 0,15 0,32
9 0,1 0,05 0,13

Найдите:

Задача № 16797

30₽
Цена: 30₽

В доме отдыха 40% отдыхающих любят ловить рыбу, остальные охотятся. Любители ловить рыбу с вероятностью 0,8 приносят добычу, а охотники – 0,6. Какова вероятность, что будет какая-нибудь добыча?

Задача № 16796

30₽
Цена: 30₽

Легковые и грузовые машины проезжают по шоссе около бензоколонки, легковых в 2 раза больше, чем грузовых. Вероятность легковой машины подъехать к бензоколонке равна 0,7, а грузовой – 0,8. Машина подъехала к бензоколонке. Какова вероятность, что это легковая машина?

Задача № 16795

100₽
Цена: 100₽

Вероятность изготовления детали с дефектами равна 0,1. Почему нельзя применить неравенство Чебышева для оценки вероятности того, что число нестандартных деталей среди 10000 изготовленных будет заключено в границах от 959 до 1030 включительно? Какой должна быть левая граница, чтобы применение неравенства Чебышева стало возможным? Решить задачу при сопутствующем изменении левой границы.

Задача № 16794

75₽
Цена: 75₽

Найдите характеристическую функцию непрерывной случайной величины, имеющей плотность распределения
$$ p_\xi (x)=\left \{
\begin{array} {ll}
0, & x < 0\\
9xe^{-3x}, & x \ge 0
\end{array} \right. $$

Задача № 16793

200₽
Цена: 200₽

Дискретная двумерная случайная величина (ξ, η) задана рядом распределения:

ξ \ η 3 6 11
-4 0,17 0,13 0,25
4 0,1 0,3 0,05

Найдите:

Задача № 16716

50₽
Цена: 50₽

В ящике находится k деталей, принадлежащих цеху № 1, M деталей – цеху № 2 и r деталей – цеху № 3. Вероятность того, что деталь окажется бракованной для цеха № 1, равна p1, для цеха № 2 – p2, а цех № 3 производит n % брака. Наудачу ОТК отбирает на проверку деталь, найти вероятность того, она окажется стандартной.
k = 5; M = 3;r = 4;p1 = 0,15; p2 = 0,14; n = 6

Задача № 16715

50₽
Цена: 50₽

В урне находится k белых, M красных и r черных шаров. Наудачу вынимаются n шаров. Найти вероятность того, что из них окажется:
1) 2 белых;
2) все красные.

k = 8; M = 6; r = 5; n = 3

Задача № 16714

30₽
Цена: 30₽

Две лампочки соединены в электрической цепи параллельно. Вероятность того, что первая лампочка выйдет из строя равна p1, а вероятность неисправности второй лампочки равна p2. Найти вероятность того, что:
1) света не будет;
2) свет будет.
p1 = 0,15; p2 = 0,16

Задача № 16160

150₽
Цена: 150₽

Дифференциальная функция распределения случайной величины имеет вид f(x) = Ag(x). Найти параметр А, М(Х), D(Х), σ(Х), М0, Мe. Построить графики f(x) и F(x), рассматривая не менее пяти точек на интервале. Найти вероятность того, что отклонение от математического ожидания не более трех среднеквадратических отклонений. $$g(x)=\frac{1}{x^4},\ х\ge 2$$

Задача № 16140

75₽
Цена: 75₽

В урне 7 белых и 3 чёрных шара. Из неё 3 раза подряд извлекают шар, и каждый раз возвращают в урну. Приняв за СВ Х – число извлечённых белых шаров построить:
1) закон распределения;
2) многоугольник распределения СВ Х;
3) найти M(X) и D(X).

Задача № 16138

75₽
Цена: 75₽

Дискретная случайная величина Х может принимать только два значения: х1 и х2, причем х1 < х2. Известны вероятность р1 возможного значения х1, математическое ожидание М(Х) и дисперсия D(Х). Найти закон распределения этой случайной величины.
р1 = 0,9 М(Х) = 3,1; D(Х) = 0,09

Задача № 15916

100₽
Цена: 100₽

Испытуемый прибор состоит из трех малонадежных элементов. Отказы элементов за некоторое время Т независимы, а их вероятность равны соответственно Р1, Р2, Р3. Найти закон распределения, математическое ожидание, моду, дисперсию числа не отказавших элементов. Построить функцию распределения. Определить вероятности того, что отказавших элементов будет не более n.
Р1 = 0,06; Р2 = 0,03; Р3 = 0,04; n = 1.

Задача № 15914

50₽
Цена: 50₽

Среди 10 деталей имеется 2 окрашенных. Вероятность того, что окрашенная деталь стандартная, равна 0,7, а некрашеная − 0,9. Наудачу извлечена деталь, оказавшаяся стандартной. Найти вероятность того, что извлеченная деталь окрашена.

Задача № 15912

50₽
Цена: 50₽

Страницы

Подписка на Теория вероятностей