Онлайн-магазин готовых решений

Вы можете мгновенно получить на свой е-мэйл решение любой из этих задач, оплатив её стоимость через онлайн-сервис на нашем сайте. Подробные инструкции по оплате можно увидеть, кликнув на ссылку номера задачи.
Если найти нужную задачу не удаётся, Вы можете оформить Заказ.

Как использовать поиск
Всего задач, соответствующих запросу: 8053
Номер Условие задачи Предмет Задачник Цена
6359




ПРИМЕНЕНИЕ УРАВНЕНИЙ ЛАГРАНЖА ВТОРОГО РОДА К ИЗУЧЕНИЮ ДВИЖЕНИЯ МЕХАНИЧЕСКОЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ. Тело D массой m1 =120 кг вращается вокруг вертикальной оси O1z под действием пары сил с моментом Mz = 75∙t3. Варианты расчетных схем изображены на рисунке. При этом по желобу АВ тела D под действием внутренней силы $F=\sqrt{t+\sin t}$, направленной по касательной к желобу (управляющее воздействие), движется материальная точка М массой m2 = 20 кг. Согласно закону равенства действия и противодействия с такой же по величине силой, но направленной в противоположную сторону, точка М действует на тело D. Варианты числовых значений параметров приведены в таблице.
Используя уравнения Лагранжа второго рода составить дифференциальные уравнения движения механической системы в обобщенных координатах. Сопротивлением движению пренебречь.
Тело D рассматривать как тонкую однородную пластину. Форма пластины выбирается в соответствии с вариантом задачи. Осевой момент инерции тела определять по формуле, приведенной в таблице.

Номер варианта m1, кг m2, кг a, м Mz = Mz(t), Н∙м F = F(t), Н
29 120 20 5 75t3 $\sqrt{t+\sin t}$
Теоретическая механика D2.18 Теоретическая механика 300₽
6361




ПРИМЕНЕНИЕ ТЕОРЕМЫ ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ К ИЗУЧЕНИЮ ДВИЖЕНИЯ МЕХАНИЧЕСКОЙ СИСТЕМЫ. Механическая система, изображенная на рисунке, приводится в движение из состояния покоя. При этом колесо B катится без скольжения по плоскости. Массы тел A, B и C) (mA, mB, mC), заданная нагрузка (F и M) и радиус инерции ρB колеса B приведены в таблице. Радиусы колеса B и шкива C соответственно равны RB = 0,8 м, rB = 0,5 м, Rc = 0,2 м. Углы α и β имеют значения: α = 30°, β = 60°. Коэффициент трения качения колеса B равен k = 0,05∙RB; коэффициент трения скольжения тела A равен f = 0,1.
Используя теорему об изменении кинетической энергии системы, определить скорость и ускорение тела A после того, как оно переместится на расстояние SA = 2 м. Шкив C считать однородным сплошным диском; силами сопротивления в подшипниках, массой троса, его растяжением и проскальзыванием по ободу шкива пренебречь.
Числовые значения параметров контрольной работы Д4 вариант №29 (1)

Номер варианта № Дано mA, кг mB, кг mC, кг M, Н∙м F, Н ρB, см
29 1 30 120 80 200 40 0,7
Теоретическая механика D3.29 Теоретическая механика 300₽
6363




ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ
Груз D массой т, получив в точке A начальную скорость движется по изогнутой трубе ABC, расположенной в вертикальной плоскости.
На участке AB трубы на груз, кроме силы тяжести, действует сила сопротивления R, зависящая от скорости v груза D: R=0,1∙v .
В точке B груз, изменив направление приобретенной скорости, но сохранив при этом ее величину, переходит на участок BC трубы, где на него, помимо силы тяжести, действует сила трения скольжения (коэффициент трения груза о трубу f = 0,2) и переменная по величине сила F = 3∙sin(π∙t), направленная вдоль участка BC. Проекция Fx последней силы на ось Bx задается.
Считая груз D материальной точкой, и зная расстояние AB или время t, движения груза от точки A до точки B, найти уравнение х = х(t) движения груза на участке BC.
Варианты расчетных схем изображены на рис. 2.1. Варианты числовых значений параметров приведены в таблице.

Номер варианта № Дано m, кг v0, м/с µ, Н∙с/м n F, Н α, град t, сек
27 1 5 2 0,1 1 3∙sin(πt) 30 3
Теоретическая механика 300₽
6365




СОЧЛЕНЕННАЯ СИСТЕМА ТЕЛ.
Сочлененная система, состоит из двух стержней, соединенных неподвижным цилиндрическим шарниром либо свободно опирающихся друг на друга, и имеет внешние опоры, изображенные на рисунке. Внешние опоры могут содержать жесткую заделку, неподвижный цилиндрический шарнир, невесомый стержень или нить, подвижную опору. Система нагружена равномерно распределенной нагрузкой интенсивностью q и (или) линейно распределенной нагрузкой с максимальной интенсивностью qmax, парой сил с моментом М1 и силой F1.
Определить реакции внешних и внутренних связей, наложенных на перемещения точек заданной системы тел.
Варианты расчетных схем в соответствии с вариантами контрольных работ изображены на рисунке. Числовые значения параметров приведены в таблице.
Числовые значения параметров контрольной работы С2

Номер варианта № Дано a, м b, м c, м d, м M1, кНм F1, Н qm, Н/м q, Н/м α, ° β, ° γ, °
6 1 5 2 3 1 20 25 4 1,6 50 15 120
Теоретическая механика 300₽
6367




ПРОСТРАНСТВЕННАЯ СИСТЕМА СИЛ
Изогнутая под прямыми углами пространственная рама концом А заделана в неподвижную опору и нагружена равномерно распределенной нагрузкой интенсивностью q или линейное I распределенной нагрузкой с максимальной интенсивностью qmax, парой сил с моментом M и силой P, расположенной в плоскости перпендикулярной участку рамы длиной l4 и образующей угол α с прямой изображенной на рисунке.
Определить опорные реакции рамы.
Варианты расчетных схем изображены па рисунке.
Номер на рисунке соответствует варианту задания. Числовые значения параметров приведены в таблице.

Номер варианта P, Н M, Н∙м q, Н/м l1, м l2, м l3, м l4, м α, °
6 700 400 1000 1,6 1 1,2 1,2 -30
Теоретическая механика 300₽
6369

Цикл тепловой машины, рабочим веществом которой является ν молей идеального одноатомного газа, состоит из изотермического расширения, изохорного охлаждения и адиабатического сжатия. В изохорном процессе температура газа понижается на ΔТ, а КПД тепловой машины равен η. Определите работу, совершённую газом в изотермическом процессе.

Молекулярная физика и термодинамика 15₽
6371

Два параллельных длинных проводника с токами I2 = 2 A, текущими в противоположных направлениях, расположены на расстоянии R = 15 см друг от друга. Определить индукцию магнитного поля в точке, лежащей между проводниками, на расстояние r1 = 3 см от второго проводника.

Электромагнетизм 15₽
6373

Электрон влетел в однородное поле, индукция которого В = 200 мкТл, перпендикулярно линиям индукции и описал дугу окружности радиусом r = 4 см. Определить кинетическую энергию электрона.

Электромагнетизм 15₽
6375

Максимум энергии излучения песчаной почвы приходится на длину волны λ = 10 мкм. На какую длину волны он сместится, если температура почвы снизится на ΔT = 90 К

Физика атома 15₽
6377

Из духового ружья стреляют в спичечную коробку, лежащую на расстоянии l = 30 см от края стола. Нуля массы m = 1 г, летящая горизонтально со скоростью v0 = 150 м/с, пробивает коробку и вылетает из нее со скоростью v0/2. Масса коробки М = 50 г. При каком коэффициенте трения к между коробкой и столом коробка упадет со стола?

Механика 15₽
6379

Найти неопределенный интеграл: $$\int\frac{x}{(4-x^2)^5}dx$$

Неопределённый интеграл 15₽
6381

Найти неопределенный интеграл: $$\int e^x \ln(1+3 e^x)\,dx$$

Неопределённый интеграл 15₽
6383

Найти неопределенный интеграл: $$\int \sin^2 {x} \cos^5 {x} dx$$

Неопределённый интеграл 30₽
6385

Найти неопределенный интеграл: $$\int x^3\sqrt{4-x^2} dx$$

Неопределённый интеграл 30₽
6387

Вычислить несобственный интеграл или установить его расходимость $$\int_{1}^{+\infty}\frac{1}{x^2+x+1}\,dx$$

Несобственный интеграл 30₽
6389

Найти общие решения дифференциального уравнения $y'\sin x = (y-2)\cos x$

Дифференциальные уравнения 15₽
6391

Найти общие решение дифференциального уравнения $xy''+2y'=x^3$

Дифференциальные уравнения 30₽
6393

Найти общее решение неоднородного линейного дифференциального уравнения $y''-2y'+y=2e^x-x^2$

Дифференциальные уравнения 50₽
6395




СОЧЛЕНЕННАЯ СИСТЕМА ТЕЛ
Сочлененная система, состоит из двух стержней, соединенных неподвижным цилиндрическим шарниром либо свободно опирающихся друг на друга, и имеет внешние опоры, изображенные на рисунке. Внешние опоры могут содержать жесткую заделку, неподвижный цилиндрический шарнир, невесомый стержень или нить, подвижную опору. Система нагружена равномерно распределенной нагрузкой интенсивностью q и (или) линейно распределенной нагрузкой с максимальной интенсивностью qmax, парой сил с моментом М1 и силой F1.
Определить реакции внешних и внутренних связей, наложенных на перемещения точек заданной системы тел.
Варианты расчетных схем в соответствии с вариантами контрольных работ изображены на рисунке. Числовые значения параметров приведены в таблице.
Числовые значения параметров контрольной работы С2

Номер варианта № Дано a, м b, м c, м d, м M1, кНм F1, Н qm, Н/м q, Н/м α, ° β, ° γ, °
7 7 8 5 5 2 10 20 2 1,3 90 60 100
Теоретическая механика 300₽
6397




ПРОСТРАНСТВЕННАЯ СИСТЕМА СИЛ
Изогнутая под прямыми углами пространственная рама концом А заделана в неподвижную опору и нагружена равномерно распределенной нагрузкой интенсивностью q или линейное I распределенной нагрузкой с максимальной интенсивностью qmax, парой сил с моментом M и силой P, расположенной в плоскости перпендикулярной участку рамы длиной l4 и образующей угол α с прямой изображенной на рисунке.
Определить опорные реакции рамы.
Варианты расчетных схем изображены па рисунке.
Номер на рисунке соответствует варианту задания. Числовые значения параметров приведены в таблице.

Номер варианта P, Н M, Н∙м q, Н/м l1, м l2, м l3, м l4, м α, °
5 200 500 300 1,8 1,2 1,4 1 150
Теоретическая механика 300₽
6399




СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ
По заданным уравнениям относительного движения точки S = S(t) по переносящему телу и угловой скорости ω = ω(t) этого тела приведенным в таблице, найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1. Варианты расчетных схем изображены на рисунке.

Номер варианта № Дано ω(t), рад/c S(t), см R, см a, см t, сек
30 2 -πt π(3+cos(2πt)) 10 - 1/3

Точка M пластины движется по дуге окружности радиуса R = 0,15 м вращается вокруг стороны квадрата AB с угловой скоростью ω = 3∙t (рад/с). По дуге окружности точка М двигается согласно уравнению AM = S(t) = 10∙π∙sin2(π∙t) (см). Определить абсолютные скорость и ускорение точки в момент времени t1 = 1/3 (с).

Теоретическая механика 300₽
6401

Духон М. Ю. Часть 2, 80 примеров
2.1.1. Найти производную функции: $f(x)=2x^4-3x^2+5x-7$.
и ещё 79 такого рода примеров

Математический анализ 400₽
6403

Вычислить определенный интеграл с точностью до 0,001, используя разложение подынтегральной функции в ряд Маклорена $$\int_{0}^{1/2}\frac{dx}{\sqrt{1+x^2}}$$

Определенный интеграл 50₽
6405

Исследовать сходимость числового ряда $$\sum_{n=1}^{\infty}\frac{n^2-n+5}{n^2(n+4)}$$

Ряды 30₽
6407

Найти область сходимости степенного ряда $$\sum_{n=1}^{\infty}\frac{2n+1}{n^3}x^n$$

Ряды 30₽
6437

Точка движется по окружности радиусом R = 2 см. Зависимость пути от времени дается уравнением S = Ct3. Здесь: С = 0,1 см/с3. Найти нормальное и тангенциальное ускорения точки в момент времени, когда её линейная скорость равна 0,3 м/с.

Механика 10₽
6439

Тело начинает двигаться вдоль прямой с постоянным ускорением. Через 30 мин ускорение тела меняется по направлению на противоположное, оставаясь таким же по величине. Через какое время от начала движения тело вернется в исходную точку?

Механика 10₽
6441

Поезд движется по закруглению радиусом 500 м. Ширина железнодорожной колеи 152,4 см. Наружный рельс расположен на 12 см выше внутреннего. При какой скорости движения поезда на закруглении колеса не оказывают давления на рельсы?

Механика 50₽
6443

С какой силой давит груз массой m = 60 кг на подставку, если подставка вместе с грузом движется вниз равнозамедленно с ускорением а = 1 м/с2?

Механика 15₽
6445

Боек автоматического молота массой 100 кг падает на заготовку детали, масса которой вместе с наковальней 2000 кг. Скорость молота в момент удара 2 м/с. Считая удар абсолютно неупругим, определить энергию, идущую на деформацию заготовки.

Механика 50₽
6447

Две одинаковые тележки движутся друг за другом по инерции (без трения) с одной и той же скоростью v0. На задней тележке находится человек массой m. В некоторый момент человек прыгнул в переднюю тележку со скоростью u относительно своей тележки. Имея в виду, что масса каждой тележки равна М, найти скорости, с которыми будут двигаться обе тележки после этого.

Механика 15₽
6449

Гладкий легкий горизонтальный стержень АВ может вращаться без трения вокруг вертикальной оси, проходящей через его конец А. На стержне находится небольшая муфточка массой m, соединенная пружинкой длиной l0 с концом А. Жесткость пружины равна k. Какую работу надо совершить, чтобы эту систему медленно раскрутить до угловой скорости ω?

Механика 15₽
6451

Центробежная стиральная машина наполнена мокрым бельем и вращается со скоростью 1200 об/мин. Во сколько раз центростремительная сила к моменту отрыва капли воды от ткани больше веса капли, если капля находится на расстоянии 0,3 м от оси вращения.

Механика 30₽
6453

Космический корабль совершает мягкую посадку на Луну (ускорение свободного падения вблизи поверхности Луны g = 1,6 м/с2). При этом корабль движется равнозамедленно в вертикальном направлении (относительно Луны) с ускорением 8,4 м/с2. Определите вес космонавта массой 70 кг, находящегося в этом корабле.

Механика 10₽
6455

Диск радиусом R = 20 см вращается согласно уравнению φ = A + Bt + Ct3. Здесь: A = 3 рад, В = -1 рад/с, C = 0,1 рад/с3. Определить: тангенциальное, нормальное и полное ускорения для момента времени t = 10 с.

Механика 10₽
6457

Точка движется по окружности радиусом R = 10 см с постоянным тангенциальным ускорением. За время t1 точка сделала пять оборотов и ее скорость v1 в момент времени t1 была равна 10 см/с. Найти нормальное ускорение в момент времени t2 = 20 с.

Механика 15₽
6459

Тележка массы m1 вместе с человеком массы m2 движется со скоростью u. Человек начинает идти с постоянной скоростью по тележке в том же направлении. При какой скорости человека относительно тележки она остановится? Трением колес тележки о землю пренебречь.

Механика 25₽
6461

Шайба массой m = 50 г соскальзывает без начальной скорости по наклонной плоскости, составляющей угол α = 30° с горизонтом, и, пройдя по горизонтальной плоскости расстояние l = 50 см, останавливается. Найти работу сил трения на всем пути, считая всюду коэффициент трения μ = 0,15.

Механика 15₽
6463

Тело массой $m$ начинают поднимать с поверхности земли, приложив к нему силу $F$, которую изменяют с высотой подъема $y$ по закону $F = 2(ay – 1)mg$, где $a$ – положительная постоянная. Найти работу этой силы и приращение потенциальной энергии тела в поле тяжести Земли на первой половине пути подъема.

Механика 15₽
6465

Каким должен быть радиус однородной сферы плотностью 5500 кг/м3, чтобы потенциальная энергия Еп молекулы азота, расположенной у поверхности сферы, в гравитационном поле этой сферы была равной 1,6∙10-20 Дж?

Механика 100₽
6467

Искусственный спутник движется в экваториальной плоскости Земли с востока на запад по круговой орбите радиусом 1∙104 км. Определите скорость этого спутника относительно Земли.

Механика 15₽
6469

Идеальный газ объемом 2 м3 при изотермическом расширении изменяет давление от 12∙105 до 2∙105 Па. Определить работу расширения газа, изменение внутренней энергии и количество подведенной теплоты.

Молекулярная физика и термодинамика 50₽
6471

Идеальный двухатомный газ при давлении p1 = 1,01∙105 Па занимал объем V1 = 5 л, а при давлении, втрое большем, – объем V2 = 2 л. Переход из первого состояния во второе был произведен в 2 этапа: сначала изохорно, а затем изобарно. Найти изменение внутренней энергии газа и произведенную над газом работу.

Молекулярная физика и термодинамика 50₽
6473

Находящийся в цилиндре с поршнем кислород (О2) нагревается при постоянном давлении. Начальная температура газа 0 °C, масса газа 16 г. Какое количество теплоты было сообщено кислороду, если при этом его объем удвоился? Удельная теплоемкость кислорода при постоянном давлении cP = 913,4 Дж/(кг∙К).

Молекулярная физика и термодинамика 10₽
6475

Найти объем изобарного расширения в цикле паровой машины мощностью 10 кВт, совершающей 120 циклов в минуту, имеющей объем цилиндра V2 = 10 л, если давление пара в котле Р1 = 2 МПа. Показатель политропы 2. Объемом V0 пренебречь.

Молекулярная физика и термодинамика 50₽
6477

Определить максимальную температуру идеального одноатомного газа, используемого в качестве рабочего тела в тепловой машине, работающей по циклу, состоящему из двух изотерм (Т2 = 300 К) и двух изобар (Р1 = 2Р2). КПД цикла 0,19.

Молекулярная физика и термодинамика 30₽
6479




По заданным уравнениям относительного движения точки S = S(t) по переносящему телу и угловой скорости ω=ω(t) этого тела приведенным в табл. 2, найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1. Варианты расчетных схем изображены на рисунке.

Номер варианта № Дано ω(t), рад/с S(t), см R, см a, см t, сек
30 2 -π∙t π∙(3+cos(2π∙t)) 10 - 1/3

Точка M пластины движется по дуге окружности радиуса R = 0,10 м вращается вокруг стороны квадрата AB с угловой скоростью ω = 3∙t (рад/с). По дуге окружности точка М двигается согласно уравнению AM = S(t) = π∙(3+cos(2∙π∙t)) (см). Определить абсолютные скорость и ускорение точки в момент времени t1 = 1/3 (с).

Теоретическая механика 300₽
6481




Груз D массой т, получив в точке A начальную скорость движется по изогнутой трубе ABC, расположенной в вертикальной плоскости.
На участке AB трубы на груз, кроме силы тяжести, действует сила сопротивления R, зависящая от скорости v груза D: R = 0,05∙v2.
В точке B груз, изменив направление приобретенной скорости, но сохранив при этом ее величину, переходит на участок BC трубы, где на него, помимо силы тяжести, действует сила трения скольжения (коэффициент трения груза о трубу f = 0,2) и переменная по величине сила F = 0,5∙cos(2∙t), направленная вдоль участка BC. Проекция Fx последней силы на ось Bx задается.
Считая груз D материальной точкой, и зная расстояние AB или время t, движения груза от точки A до точки B, найти уравнение х = х(t) движения груза на участке BC.
Варианты расчетных схем изображены на рисунке.

Номер варианта № Дано m, кг v0, м/с µ, Н∙с/м n F, Н α, град t, сек l, м
28 2 6 18 0,05 2 0,5cos(2t) 30 - 4
Теоретическая механика 300₽
6483




ПРИМЕНЕНИЕ ТЕОРЕМЫ ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ К ИЗУЧЕНИЮ ДВИЖЕНИЯ МЕХАНИЧЕСКОЙ СИСТЕМЫ Механическая система, изображенная на рисунке, приводится в движение из состояния покоя. При этом колесо B катится без скольжения по вертикальной плоскости. Массы тел A, B и D (mA, mB, mD), заданная нагрузка F и M. Радиусы колеса B и шкива D соответственно равны RB = 0,8 м, RD = 0,2 м. Угол α имеет значение: α = 30°. Коэффициент трения качения колеса B равен k = 0,05∙RB; коэффициент трения скольжения тела B равен f = 0,1. Используя теорему об изменении кинетической энергии системы, определить скорость и ускорение тела A после того, как оно переместится на расстояние SA = 2 м. Шкив D считать однородным сплошным диском; силами сопротивления в подшипниках, массой троса, его растяжением и проскальзыванием по ободу шкива пренебречь.
Числовые значения параметров контрольной работы Д4 вариант №30 (2)

Номер варианта № Дано mA, кг mB, кг mD, кг M, Н∙м F, Н
30 2 50 90 30 50 700
Теоретическая механика 300₽
6485




ПРИМЕНЕНИЕ УРАВНЕНИЙ ЛАГРАНЖА ВТОРОГО РОДА К ИЗУЧЕНИЮ ДВИЖЕНИЯ МЕХАНИЧЕСКОЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ
Тело D массой m1 = 30 кг вращается вокруг вертикальной оси O1z под действием пары сил с моментом Mz = 15∙t2 - 10∙t3. Варианты расчетных схем изображены на рисунке. При этом по желобу АВ тела D под действием внутренней силы F = 1,5(t2 + 3), направленной по касательной к желобу (управляющее воздействие), движется материальная точка М массой m2 = 5 кг. Согласно закону равенства действия и противодействия с такой же по величине силой, но направленной в противоположную сторону, точка М действует на тело D.
Используя уравнения Лагранжа второго рода составить дифференциальные уравнения движения механической системы в обобщенных координатах. Сопротивлением движению пренебречь.

Номер варианта m1, кг m2, кг a, м b, м R, м α, град Mz = Mz(t), Н∙м F = F(t), Н
30 30 5 3 1 - - 15∙t2 - 10∙t3 1.5∙(t2 + 3)
Теоретическая механика 300₽

Страницы