Задача № 6963

Предмет:
50₽
Условие задачи: 

В задаче дана матрица $$A=\begin{pmatrix}
2 & 1 & 1 \\
3 & 1 & 2 \\
1 & 0 & 2
\end{pmatrix}.$$
Найти обратную матрицу и проверить, что $A^{-1} \cdot A = A \cdot A^{-1}=E$. При помощи обратной матрицы найти решение $x_1, x_2, x_3$ системы, записанной в матричной форме $A \cdot X=B$, где $X=\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}$ и $A=\begin{pmatrix}
3 \\
-1 \\
2
\end{pmatrix}$

Как получить решение?
Для того, чтобы получить решение этой задачи на свой е-мэйл, сделайте следующее:
  1. Нажмите кнопку Добавить в корзину.
  2. В Корзине покупок нажмите кнопку Оплата.
  3. На странице оплаты проверьте е-мэйл, на который будет выслано решение. Оплата осуществляется через платежный сервис ЮКасса, который в настоящее время позволяет делать платежи следующими способами:
    • Банковская карта: Mastercard, Maestro, Visa, МИР
    • ЮMoney: Кошелёк или привязанная карта
    • Qiwi: На сайте Qiwi
    • Наличные: В терминалах города
    Нажмите кнопку Продолжить.
  4. Еще раз проверьте детали покупки, а затем нажмите кнопку Оплата. Вы попадете на сайт платежного сервиса для дальнейшего оформления платежа.
  5. После оплаты Вам автоматически будет направлен е-мэйл с решением выбранной задачи.
В случае каких-либо проблем смело обращайтесь к нам, мы ответим на каждое письмо.