Задача № 3427

Предмет:
50р.
Условие задачи: 

В задаче дана матрица $$A=\begin{pmatrix}
2 & 1 & 1 \\
3 & 2 & 1 \\
1 & 2 & 0
\end{pmatrix}.$$
Найти обратную матрицу и проверить, что $A^{-1} \cdot A = A \cdot A^{-1}=E$. При помощи обратной матрицы найти решение $x_1, x_2, x_3$ системы, записанной в матричной форме $A \cdot X=B$, где $X=\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}$ и $A=\begin{pmatrix}
3 \\
-1 \\
2
\end{pmatrix}$

Как получить решение?
Для того, чтобы получить решение этой задачи на свой е-мэйл, сделайте следующее:
  1. Нажмите кнопку Добавить в корзину.
  2. В Корзине покупок нажмите кнопку Оплата.
  3. На странице оплаты проверьте е-мэйл, на который будет выслано решение, а также выберите способ оплаты. В данный момент оплата осуществляется через сервис РобоКасса, который позволяет платить, например, банковской картой, через сервис Qiwi, Samsung Pay и многие другие. Нажмите кнопку Продолжить.
  4. Еще раз проверьте детали покупки, а затем нажмите кнопку Оплата. Вы попадете на сайт Робокасса для дальнейшего оформления платежа.
  5. После оплаты Вам автоматически будет направлен е-мэйл с решением выбранной задачи.
Обратите внимание, что сервис Робокасса берёт дополнительную комиссию 7-9%. Поэтому в случае, если сумма заказа более 500 рублей, то для избежания высокой комиссии рекомендуем сделать платеж на один из наших электронных кошельков, написав нам сообщение с номером задач, которые вы оплатили. В ответном сообщении мы вышлем Вам файлы с оформленными решениями.

В случае каких-либо проблем смело обращайтесь к нам, мы ответим на каждое письмо.