Задача № 3325

100₽
Условие задачи: 

Даны векторное поле $\vec{F}=(x+1)\vec{i}+(y-2-xzx)\vec{j}+z \vec{k}$ и плоскость $2x-y+3z-5=0$, которая совместно с координатными плоскостями образует пирамиду. Пусть G - основание пирамиды, G ограничивающий контур - λ, нормаль к G, направленная вне пирамиды.
Требуется:

  • Вычислить поток векторного поля $\vec{F}$ через поверхность в направлении нормали n
  • Вычислить циркуляцию векторного поля $\vec{F}$ по замкнутому контуру $\lambda$ непосредственно и применив теорему Стокса к контуру $\lambda$ и ограниченной им поверхности G с нормалью n
  • Вычислить поток векторного поля $\vec{F}$ через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно, и применив теорему Остроградского. Сделать чертеж.
Как получить решение?
Для того, чтобы получить решение этой задачи на свой е-мэйл, сделайте следующее:
  1. Нажмите кнопку Добавить в корзину.
  2. В Корзине покупок нажмите кнопку Оплата.
  3. На странице оплаты проверьте е-мэйл, на который будет выслано решение. Оплата осуществляется через платежный сервис ЮКасса, который в настоящее время позволяет делать платежи следующими способами:
    • Банковская карта: Mastercard, Maestro, Visa, МИР
    • ЮMoney: Кошелёк или привязанная карта
    • Qiwi: На сайте Qiwi
    • Наличные: В терминалах города
    Нажмите кнопку Продолжить.
  4. Еще раз проверьте детали покупки, а затем нажмите кнопку Оплата. Вы попадете на сайт платежного сервиса для дальнейшего оформления платежа.
  5. После оплаты Вам автоматически будет направлен е-мэйл с решением выбранной задачи.
В случае каких-либо проблем смело обращайтесь к нам, мы ответим на каждое письмо.