Комбинаторика

Задача № 16589

50р.
Цена: 50р.

В строку записаны несколько букв О и Р в произвольном порядке (назовём это «словом»). Первым ходом между каждыми двумя соседними буквами исходного слова впишем дополнительные буквы по таким правилам:
-если соседние буквы одинаковые, между ними вписывается О;
-если соседние буквы разные, между ними вписывается Р.

Задача № 16543

200р.
Цена: 200р.

На окружности отмечено 50 точек. Рассмотрим все треугольники с вершинами в них. Может ли среди них тупоугольных быть ровно в 2 раза больше, чем остроугольных?

Задача № 16478

100р.
Цена: 100р.

Число N обладает таким свойством: если в нём вычеркнуть несколько цифр (одну или больше, но чтобы что-то осталось), то всегда получается простое число или 1. Какое наибольшее число знаков может иметь N?

Задача № 16426

150р.
Цена: 150р.

Задача № 16212

100р.
Цена: 100р.

Можно ли грани додекаэдра раскрасить в 6 цветов так, чтобы для любой тройки цветов нашлась вершина, в которой сходятся три грани этих трех цветов?

Задача № 16136

50р.
Цена: 50р.

Отмечены вершины и середины сторон правильного 11-угольника (то есть всего отмечено 22 точки). Сколько существует выпуклых четырёхугольников с вершинами в отмеченных точках?

Задача № 16134

200р.
Цена: 200р.

По периметру круглой площади растёт 40 берёз. Сколькими способами можно вырубить 11 берёз так, чтобы в их число не попали никакие две берёзы, стоящие рядом?

Задача № 16054

100р.
Цена: 100р.

Для каких натуральных n набор чисел 1, 2, ..., n можно разбить на две группы так, чтобы произведение чисел одной группы было равно сумме чисел другой группы?

Задача № 16050

100р.
Цена: 100р.

У Миши есть кубики двух цветов. Он строит из них башню, ставя каждый следующий кубик на предыдущий. Запрещено использовать более 14 кубиков каждого из цветов. Миша заканчивает строить башню, как только в ней окажется 14 кубиков какого-то цвета. Сколько различных башен может построить Миша?

Подписка на Комбинаторика