Онлайн-магазин готовых решений

Вы можете мгновенно получить на свой е-мэйл решение любой из этих задач, оплатив её стоимость через онлайн-сервис на нашем сайте. Подробные инструкции по оплате можно увидеть, кликнув на ссылку номера задачи.
Если найти нужную задачу не удаётся, Вы можете оформить Заказ.

Как использовать поиск
Всего задач, соответствующих запросу: 888
Номер Условие задачи Предмет Задачник Ценасортировать по возрастанию
14462




Горизонтальный вал весом G может вращаться в цилиндрических шарнирах А и В. К шкиву 1 приложено нормальное давление N и касательная сила сопротивления F, пропорциональная N. На шкив 2 действуют силы натяжения ремней Т1 и T2. Груз Q висит на нити, навитой на шкив 3. Определить силу давления N и реакции шарниров в условии равновесия вала (в Н). Учесть веса шкивов P1, Р2, Р3. Все нагрузки действуют в вертикальной плоскости. Силы даны в Н, размеры - в см.

Теоретическая механика 16 СПбГУСЭ. Теоретическая механика. Равновесие вала. 2012 год 450₽
14482




Горизонтальный вал весом G может вращаться в цилиндрических шарнирах А и В. К шкиву 1 приложено нормальное давление N и касательная сила сопротивления F, пропорциональная N. На шкив 2 действуют силы натяжения ремней Т1 и T2. Груз Q висит на нити, навитой на шкив 3. Определить силу давления N и реакции шарниров в условии равновесия вала (в Н). Учесть веса шкивов P1, Р2, Р3. Все нагрузки действуют в вертикальной плоскости. Силы даны в Н, размеры - в см.

Теоретическая механика 23 СПбГУСЭ. Теоретическая механика. Равновесие вала. 2012 год 450₽
11632




Механическая система, состоящая из четырех тел, приходит в движение под действием сил тяжести из состояния покоя. Начальное положение системы показано на рисунках 2.1-2.5. Учитывая трение качения тела 4 (вариант 19), пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определить:
1. Скорость тела 1 в тот момент времени, когда пройденный им путь станет равным S1.
2. Ускорения тел, движущихся поступательно и ускорения центров масс тел, совершающих плоскопараллельное движение, угловое ускорение тел, совершающих вращательное и плоскопараллельное движения.

Вариант № m1 m2 m3 m4 i2x i3x f δ, м
19 6m 3m 2m m 1,3r 1,2r - 0,001
Теоретическая механика 400₽
8618




ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
На рис. К3.19 показана схема механизма, причем
О1А = L1 = 0,4 м;
АВ = L1 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Ползун в данном положении механизма имеет скорость VB = 4 м/с и ускорение aB = 6 м/с2. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек А, Д, Е, угловые скорости указанных шатунов и кривошипа О1А, а также ускорение точки А.

Теоретическая механика K1.19 Теоретическая механика 2 400₽
11006




ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. C5.4 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4

Номер варианта Номера стержней Номера стержней Р1, кН Р2, кН
C5.41 2, 8, 5 3, 4 70 90
Теоретическая механика C5.4 Теоретическая механика 2 400₽
11038




ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. C5.19 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4

Номер варианта Номера стержней Номера стержней Р1, кН Р2, кН
C5.19 7, 10, 2 5, 4 170 200
Теоретическая механика C5.19 Теоретическая механика 2 400₽
8398




Тележка начинает движение из состояния покоя под действием момента М, приложенного к передним колёсам. Масса тележки без колёс равна m1, масса каждого из четырёх колёс радиусом r равна m2, коэффициент трения качения fδ. Определить ускорение тележки, считая колёса однородными дисками.

Теоретическая механика Д7.18 Теоретическая механика 2 400₽
16913




Для указанной на рисунке (С-2) конструкции найти значения неизвестных реакций внешних и внутренних связей.

a, см b, см c, см d, см l, см α, ° β, ° q, Н/м F, Н M, Н∙м
8 40 30 30 50 80 45 30 6 3 5
Теоретическая механика 400₽
11152




ТРЕНИЕ СКОЛЬЖЕНИЯ И ТРЕНИЕ КАЧЕНИЯ
Расчетные схемы даны на рис. С8.17. Катушка A весом P лежит на горизонтальной плоскости. Определить наибольший вес Qmax груза B, при котором возможно равновесие. Радиусы катушки равны r и R, а ее коэффициент трения качения равен δ.

Теоретическая механика C8.17 Теоретическая механика 2 300₽
11232

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.17 4cos(2πt) 6sin(2πt) 1/3
Теоретическая механика K1.17 Теоретическая механика 2 300₽
13850




К нижнему шкиву С подъемника приложен вращающий момент М. Определить ускорение груза А массой m1 поднимаемого вверх, если масса противовеса В равна m2 а шкивы C и D радиусами r и массой m каждый представляют собой однородные круглые цилиндры. Массой ремня пренебречь.

Теоретическая механика Д7.4 Теоретическая механика 2 300₽
5049

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. С3.08 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4

Номер варианта Номера стержней Номера стержней Р1, кН Р2, кН
С3.8 3, 8, 6 1, 2 140 90
Теоретическая механика C3.8_1 Теоретическая механика 300₽
14148




ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ. ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ
Груз 1 массой m1, опускаясь вниз по призме, приводит в движение посредством нити, переброшенной через невесомый блок, груз 2 массой m2. Определить давление призмы на вертикальный выступ пола

Теоретическая механика Д7.13 Теоретическая механика 2 300₽
5117

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
На рис. К3.15 показаны схемы механизмов, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Ползун в данном положении механизма имеет скорость VB = 4 м/с и ускорение aB = 6 м/с2. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек А, Д, Е, угловые скорости указанных шатунов и кривошипа О1А, а также ускорение точки А.

Теоретическая механика K5.15 Теоретическая механика 2 300₽
8234




Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.11, исходные данные приведены в табл. 1.

Номер варианта P, кН G, кН M, кНм q, кН/м l, м α, град
C1.11 4 12 4 3 1 60°
Теоретическая механика C1.11 МИИТ. Теоретическая механика. 2012 год 300₽
8402




По стержню шарнирного параллелограмма ОАВО1, движется точка с постоянной скоростью Vотн = 31 м/с. Определить абсолютную скорость точки М в момент времени, когда угол φ = 60°. Угловая скорость стержня ОА длиной 0,2 м равна ω = 4 с-1.

Теоретическая механика K7.2 Теоретическая механика 2 300₽
11168




ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ЦЕНТРА ТЯЖЕСТИ ОДНОРОДНОГО ТЕЛА
Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.5. Размеры ферм даны в метрах, остальных тел - в сантиметрах.

Теоретическая механика C9.5 Теоретическая механика 2 300₽
11252

КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.

№ варианта S = S(t), cм R, см Время t1, с
К2.7 2t 4t - 6t2 1
Теоретическая механика K2.7 Теоретическая механика 2 300₽
13990




По стержню AB движется ползун C массой m с постоянной скоростью u относительно стержня. Момент инерции вала со стержнем относительно оси вращения Oz равен Jz. Определить закон изменения угловой скорости вала, если его начальная угловая скорость равна ω0, а ползун, принимаемый за материальную точку, находится при t = 0 на расстоянии b от оси вращения.

Теоретическая механика Д5.13 Теоретическая механика 2 300₽
5065

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
На рис. К3.6 показаны схемы механизмов, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
02В = L4 = 0,6 м;
АД = ДВ.
Кривошип O1А вращается вокруг оси O1 с постоянной угловой скоростью ω1 = ωOA = 4 с-1. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек А, В, Д, Е, угловые скорости указанных шатунов и кривошипа О2В, а также ускорение точки В.

Теоретическая механика K5.6 Теоретическая механика 2 300₽
5126


ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.18.

Теоретическая механика C4.18_1 Теоретическая механика 300₽
8334




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.3 -исходные данные приведены в таблице 2.

Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
С2.3 5 3 4 2,4 1,6 0,8 60°
Теоретическая механика C2.3 МИИТ. Теоретическая механика. 2012 год 300₽
8428




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.16, -исходные данные приведены в таблице 2.

Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
С-2.16 3 4 6 0.8 1 0.8 -
Теоретическая механика C2.16 МИИТ. Теоретическая механика. 2012 год 300₽
11184




ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ЦЕНТРА ТЯЖЕСТИ ОДНОРОДНОГО ТЕЛА
Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.13. Размеры ферм даны в метрах, остальных тел - в сантиметрах.

Теоретическая механика C9.13 Теоретическая механика 2 300₽
11586

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у=у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.

№ варианта х = х(t), cм у = у(t), см Время t1, с
5 7t2 - 3 5t 1/4
Теоретическая механика 5 300₽
16842




Для заданного положения звеньев механизма определить скорости и ускорения точек В и С.
εOA = 2 рад/с2, ωОA = 3 рад/с, OA = 20 см, AC = CB.

Теоретическая механика 300₽
5090


ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.9.

Теоретическая механика C4.9_1 Теоретическая механика 300₽
5561

Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.

Теоретическая механика C2.10. МИИТ. Теоретическая механика. 2014 год 300₽
8350




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.11 -исходные данные приведены в таблице 2.

Таблица 2
Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
C2.11 8 7 9 0,8 1,2 - 30°
Теоретическая механика C2.11 МИИТ. Теоретическая механика. 2012 год 300₽
11200

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.1 5t 2-5t2 1
Теоретическая механика K1.1 Теоретическая механика 2 300₽
12480




Для заданного механизма найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки.
OA = 30 см = 0,30 м; AB = 40 см = 0,40 м; AC = 20 см = 0,20 м; ωOA = 2 c-1.

Теоретическая механика K1.2 МИИТ. Теоретическая механика. 2012 год 300₽
3286

к3ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
На рисунке показаны схемы механизмов, причем О1А = L1 = 0,4 м; АВ = L2 = 1,4 м; ДE = L3 = 1,2 м; O2В = L4 = 0,6 м; АД = ДВ. Кривошип O1А вращается вокруг оси O1 с постоянной угловой скоростью ω1 = ωOA = 4 с-1. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек А, В, Д, Е, угловые скорости указанных шатунов и кривошипа О2В, а также ускорение точки В.

Теоретическая механика K5.7 Теоретическая механика 2 300₽
5100

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. С2.10, исходные данные указаны в таблице.

Номер варианта Р, кН М, кНм q, кН/м a, м b, м l, м α, град
С2.10 4 1.6 3 1 3.0 1.5 60
Теоретическая механика C2.10_1 Теоретическая механика 300₽
6363




ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ
Груз D массой т, получив в точке A начальную скорость движется по изогнутой трубе ABC, расположенной в вертикальной плоскости.
На участке AB трубы на груз, кроме силы тяжести, действует сила сопротивления R, зависящая от скорости v груза D: R=0,1∙v .
В точке B груз, изменив направление приобретенной скорости, но сохранив при этом ее величину, переходит на участок BC трубы, где на него, помимо силы тяжести, действует сила трения скольжения (коэффициент трения груза о трубу f = 0,2) и переменная по величине сила F = 3∙sin(π∙t), направленная вдоль участка BC. Проекция Fx последней силы на ось Bx задается.
Считая груз D материальной точкой, и зная расстояние AB или время t, движения груза от точки A до точки B, найти уравнение х = х(t) движения груза на участке BC.
Варианты расчетных схем изображены на рис. 2.1. Варианты числовых значений параметров приведены в таблице.

Номер варианта № Дано m, кг v0, м/с µ, Н∙с/м n F, Н α, град t, сек
27 1 5 2 0,1 1 3∙sin(πt) 30 3
Теоретическая механика 300₽
11136




ТРЕНИЕ СКОЛЬЖЕНИЯ И ТРЕНИЕ КАЧЕНИЯ
Расчетные схемы даны на рис. С8.9. Каток A радиуса r и весом P лежит на наклонной плоскости с углом α. Определить наибольший вес груза Qmax груза B, при котором возможно равновесие, если коэффициент трения качения катка равен δ.

Теоретическая механика C8.9 Теоретическая механика 2 300₽
11216

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.9 4t2 + 3 2t 1
Теоретическая механика K1.9 Теоретическая механика 2 300₽
5038

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.8 4∙cos(πt/2) 3∙sin(πt/2) 1,5
Теоретическая механика K1.8_1 Теоретическая механика 300₽
14098




ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис.
AB = 45 см; AC = 15 см; CD = 60 см; vA = 60 см/c

Теоретическая механика K1.5 МИИТ. Теоретическая механика. 2012 год 300₽
5108

ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ
Оси колеса радиусом r, находящемуся на горизонтальной плоскости, сообщили скорость V0. Коэффициент трения качения равен δ. Определить путь, пройденный колесом до остановки. Качение колеса происходит без скольжения. Колесо считать однородным диском.

Теоретическая механика Д3.10 Теоретическая механика 2 300₽
6483




ПРИМЕНЕНИЕ ТЕОРЕМЫ ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ К ИЗУЧЕНИЮ ДВИЖЕНИЯ МЕХАНИЧЕСКОЙ СИСТЕМЫ Механическая система, изображенная на рисунке, приводится в движение из состояния покоя. При этом колесо B катится без скольжения по вертикальной плоскости. Массы тел A, B и D (mA, mB, mD), заданная нагрузка F и M. Радиусы колеса B и шкива D соответственно равны RB = 0,8 м, RD = 0,2 м. Угол α имеет значение: α = 30°. Коэффициент трения качения колеса B равен k = 0,05∙RB; коэффициент трения скольжения тела B равен f = 0,1. Используя теорему об изменении кинетической энергии системы, определить скорость и ускорение тела A после того, как оно переместится на расстояние SA = 2 м. Шкив D считать однородным сплошным диском; силами сопротивления в подшипниках, массой троса, его растяжением и проскальзыванием по ободу шкива пренебречь.
Числовые значения параметров контрольной работы Д4 вариант №30 (2)

Номер варианта № Дано mA, кг mB, кг mD, кг M, Н∙м F, Н
30 2 50 90 30 50 700
Теоретическая механика 300₽
14806




Груз D массой m, получив в точке A начальную скорость v0, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис.3.1, табл. 3.2).
На участке АВ на груз кроме силы тяжести действуют постоянная сила Q (ее направление показано на рисунках).
В точке B груз, не изменяя своей скорости, переходит на участок BC трубы, где на него кроме силы тяжести действует переменная сила F, проекция которой Fx на ось х задана в таблице.
Считая груз материальной точкой и зная время t1 движения груза от точки A до точки B, найти скорость груза на участке BC через t2 = 2 сек. после выхода из точки B. Трением груза о трубу пренебречь.

Вариант m, кг v0, м/c Q, Н t1, с Fx, Н
5 4,5 22 9 3 t3 + 2t
Теоретическая механика Д1-5 Методичка по термеху. Нижний Новгород. 2019 год 300₽
8384

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Угол наклона полного ускорения точки обода махового колеса к радиусу равен 30°. Нормальное ускорение точки в данный момент $a_n = 10 \sqrt 3$ м/с2. Найти касательное и полное ускорение точки, отстоящей от оси вращения на расстоянии r = 0,6 м. Радиус махового колеса R = 1 м.

Теоретическая механика K4.5 Теоретическая механика 2 300₽
11132




ТРЕНИЕ СКОЛЬЖЕНИЯ И ТРЕНИЕ КАЧЕНИЯ
Расчетные схемы даны на рис. С8.7. Тяжелое однородное кольцо удерживается в равновесии нитью AB и силой трения, возникающей в точке C его контакта со стеной. При каком соотношении между коэффициентом трения f и утлом α это возможно? (α - угол наклона нити AB к вертикали).

Теоретическая механика C8.7 Теоретическая механика 2 300₽
14320




ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОГО МОМЕНТА. ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЁРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ОСИ
Круглая горизонтальная платформа вращается без трения вокруг неподвижной вертикальной оси О, перпендикулярной к ее плоскости, под действием пары сил с моментом М (пара сил лежит в плоскости платформы). Платформа представляет однородный диск радиусом R и массой m. В начальный момент платформа неподвижна. Определить закон вращательного движения платформы.

Теоретическая механика Д5.2 Теоретическая механика 2 300₽
14570




ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3

№ варианта Уравнение движения груза 1 S = S(t), см R2 r2 R3 r3 t1
К3.6 160t2 50 30 70 40 2
Теоретическая механика K3.6 Теоретическая механика 2 300₽
10908




ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20.
Столб АВ нагружен силой P, распределенной нагрузкой интенсивности q и парой сил с моментом М. Определить реакции заделки.
P = 30 кH; q = 2 кН/м; М = 50 кН м; l1 = 4 м; l2 = 3 м.

Теоретическая механика C3.17. Теоретическая механика 2 300₽
14736




ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ. ПРИНЦИП ДАЛАМБЕРА
Два груза массами m1 и m2 подвешены на двух нитях, навёрнутых на барабаны с общей осью вращения. Радиусы барабанов равны r1 и r2 момент инерции барабанов относительно оси вращения O равен J0. Определить угловое ускорение барабанов.

Теоретическая механика Д7.8 Теоретическая механика 2 300₽
8500




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. С2.17, исходные данные указаны в таблице 3.

Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
С2.17 4 3.6 4 1.0 2.2 1.2 60°
Теоретическая механика C2.17_1 Теоретическая механика 300₽
10988




СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.17, исходные данные приведены в табл. 1.

Номер варианта Р, кН G, кН M, кН∙м q, кН∙м l, м α, град
C1.17 12 6 8 3 1 30°
Теоретическая механика C1.17 Теоретическая механика 2 300₽
8588

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Колесо, имеющее неподвижную ось вращения, получило начальную угловую скорость 4π c-1. Сделав 20 оборотов, оно вследствие трения в подшипниках, остановилось. Определить угловое ускорение колеса, считая его постоянным, а также время вращения колеса до остановки.

Теоретическая механика K4.12 Теоретическая механика 2 300₽

Страницы