Онлайн-магазин готовых решений

Вы можете мгновенно получить на свой е-мэйл решение любой из этих задач, оплатив её стоимость через онлайн-сервис на нашем сайте. Подробные инструкции по оплате можно увидеть, кликнув на ссылку номера задачи.
Если найти нужную задачу не удаётся, Вы можете оформить Заказ.

Как использовать поиск
Всего задач, соответствующих запросу: 5733
Номер Условие задачи Предмет Задачник Цена
16314

Черное тело нагрели от температуры Т1 = 600 К до температуры Т2 = 2400 К. Определить: а) во сколько раз увеличилась его энергетическая светимость, б) насколько изменилась длина волны, соответствующая максимуму спектральной плотности энергетической светимости.

Электродинамика 100₽
16316

Красная граница фотоэффекта для вольфрама λ0 = 275 нм. Определить работу выхода А электрона из вольфрама и максимальную скорость Vm электронов, вырываемых из вольфрама светом с длиной волны λ = 180 нм.

Физика атома 100₽
16320

Идеальный газ находится в однородном поле тяжести Земли. Молярная масса газа М = 29∙10-3 кг/моль. Абсолютная температура газа меняется с высотой h по закону T(h) = T0(l+ah). Найти давление газа p на высоте h . На высоте h = 0 давление газа p0 = 105 Па.

№ варианта M, P0, T0, a, h
1 T0 = 300 К, a = 10-5 м-1, h = 100 м
Молекулярная физика и термодинамика 1-2-1 ТГУ. Физика 100₽
16322

Идеальный газ находится в однородном поле тяжести Земли. Молярная масса газа М = 29∙10-3 кг/моль. Абсолютная температура газа меняется с высотой h по закону T(h) = T0(l+ah). Найти давление газа p на высоте h . На высоте h = 0 давление газа p0 = 105 Па.

№ варианта M, P0, T0, a, h
3 T0 = 300 К, a = 10-5 м-1, h = 300 м
Молекулярная физика и термодинамика 1-2-3 ТГУ. Физика 100₽
16324

Идеальный газ находится в однородном поле тяжести Земли. Молярная масса газа М = 29∙10-3 кг/моль. Абсолютная температура газа меняется с высотой h по закону T(h) = T0(l+ah). Найти давление газа p на высоте h . На высоте h = 0 давление газа p0 = 105 Па.

№ варианта M, P0, T0, a, h
4 T0 = 300 К, a = 10-5 м-1, h = 400 м
Молекулярная физика и термодинамика 1-2-4 ТГУ. Физика 100₽
16326

Идеальный газ находится в однородном поле тяжести Земли. Молярная масса газа М = 29∙10-3 кг/моль. Абсолютная температура газа меняется с высотой h по закону T(h) = T0(l+ah). Найти давление газа p на высоте h . На высоте h = 0 давление газа p0 = 105 Па.

№ варианта M, P0, T0, a, h
5 T0 = 300 К, a = 10-5 м-1, h = 500 м
Молекулярная физика и термодинамика 1-2-5 ТГУ. Физика 100₽
16328

Пространство между двумя параллельными пластинами площадью S = 300 см2 заполнено газом. Пластины находятся друг от друга на расстоянии h = 5 мм. Одна пластина поддерживается при температуре Т1, другая - при температуре Т2. Найти количество теплоты Q, прошедшее посредством теплопроводности от одной пластины к другой за время t = 10 мин. Газ находится при нормальных условиях. Эффективный диаметр молекул газа равен d = 0,36 нм. Показатель адиабаты газа γ.

№ варианта T1, T2, γ
1 T1 = 290 К, T2 = 300 К, γ = 1,4
Молекулярная физика и термодинамика 1-3-1 ТГУ. Физика 100₽
16330

Пространство между двумя параллельными пластинами площадью S = 300 см2 заполнено газом. Пластины находятся друг от друга на расстоянии h = 5 мм. Одна пластина поддерживается при температуре Т1, другая - при температуре Т2. Найти количество теплоты Q, прошедшее посредством теплопроводности от одной пластины к другой за время t = 10 мин. Газ находится при нормальных условиях. Эффективный диаметр молекул газа равен d = 0,36 нм. Показатель адиабаты газа γ.

№ варианта T1, T2, γ
3 T1 = 270 К, T2 = 300 К, γ = 1,4
Молекулярная физика и термодинамика 1-3-3 ТГУ. Физика 100₽
16332

Пространство между двумя параллельными пластинами площадью S = 300 см2 заполнено газом. Пластины находятся друг от друга на расстоянии h = 5 мм. Одна пластина поддерживается при температуре Т1, другая - при температуре Т2. Найти количество теплоты Q, прошедшее посредством теплопроводности от одной пластины к другой за время t = 10 мин. Газ находится при нормальных условиях. Эффективный диаметр молекул газа равен d = 0,36 нм. Показатель адиабаты газа γ.

№ варианта T1, T2, γ
4 T1 = 290 К, T2 = 310 К, γ = 1,4
Молекулярная физика и термодинамика 1-3-4 ТГУ. Физика 100₽
16334

Пространство между двумя параллельными пластинами площадью S = 300 см2 заполнено газом. Пластины находятся друг от друга на расстоянии h = 5 мм. Одна пластина поддерживается при температуре Т1, другая - при температуре Т2. Найти количество теплоты Q, прошедшее посредством теплопроводности от одной пластины к другой за время t = 10 мин. Газ находится при нормальных условиях. Эффективный диаметр молекул газа равен d = 0,36 нм. Показатель адиабаты газа γ.

№ варианта T1, T2, γ
5 T1 = 290 К, T2 = 320 К, γ = 1,4
Молекулярная физика и термодинамика 1-3-5 ТГУ. Физика 100₽
16336

На частицу с массой покоя m = 1 г действует сила, направление которой остается неизменным, а модуль меняется со временем t по заданному закону F(t). В начальный момент времени t = 0 частица покоилась. Найти скорость частицы v в момент времени t. Сила действует в течение достаточно длительного времени, так что скорость частицы сравнима со скоростью света в вакууме.

№ варианта F(t), A, t
1 F(t) = At2, A = 5 Н/с2, t = 40 с
Молекулярная физика и термодинамика 1-4-1 ТГУ. Физика 100₽
16338

На частицу с массой покоя m = 1 г действует сила, направление которой остается неизменным, а модуль меняется со временем t по заданному закону F(t). В начальный момент времени t = 0 частица покоилась. Найти скорость частицы v в момент времени t. Сила действует в течение достаточно длительного времени, так что скорость частицы сравнима со скоростью света в вакууме.

№ варианта F(t), A, t
3 F(t) = At2, A = 5 Н/с2, t = 60 с
Молекулярная физика и термодинамика 1-4-3 ТГУ. Физика 100₽
16340

На частицу с массой покоя m = 1 г действует сила, направление которой остается неизменным, а модуль меняется со временем t по заданному закону F(t). В начальный момент времени t = 0 частица покоилась. Найти скорость частицы v в момент времени t. Сила действует в течение достаточно длительного времени, так что скорость частицы сравнима со скоростью света в вакууме.

№ варианта F(t), A, t
4 F(t) = At2, A = 5 Н/с2, t = 70 с
Молекулярная физика и термодинамика 1-4-4 ТГУ. Физика 100₽
16342

На частицу с массой покоя m = 1 г действует сила, направление которой остается неизменным, а модуль меняется со временем t по заданному закону F(t). В начальный момент времени t = 0 частица покоилась. Найти скорость частицы v в момент времени t. Сила действует в течение достаточно длительного времени, так что скорость частицы сравнима со скоростью света в вакууме.

№ варианта F(t), A, t
5 F(t) = At2, A = 5 Н/с2, t = 80 с
Молекулярная физика и термодинамика 1-4-5 ТГУ. Физика 100₽
16350

Один моль (ν = 1 моль) идеального газа переходит из начального состояния 1 в конечное состояние 3 в результате двух процессов 1-2 и 2-3. Значения давления и объема газа в состояниях 1 и 3 равны соответственно P1V1 и P3V3. Найти работу A, совершенную газом, количество теплоты Q, полученное газом и приращение внутренней энергии газа ΔU в процессе перехода из начального состояния 1 в конечное состояние 3.

№ варианта Процессы, газ, P1V1, P3V3
1 изохорный 1-2, газ N2, P1 = 105 Па, V1 = 3 л
изобарный 2-3, P3 = 2∙105 Па, V3 = 6 л
Молекулярная физика и термодинамика 2-1-1 ТГУ. Физика 100₽
16352

Один моль (ν = 1 моль) идеального газа переходит из начального состояния 1 в конечное состояние 3 в результате двух процессов 1-2 и 2-3. Значения давления и объема газа в состояниях 1 и 3 равны соответственно P1V1 и P3V3. Найти работу A, совершенную газом, количество теплоты Q, полученное газом и приращение внутренней энергии газа ΔU в процессе перехода из начального состояния 1 в конечное состояние 3.

№ варианта Процессы, газ, P1V1, P3V3
3 изохорный 1-2, газ N2, P1 = 105 Па, V1 = 3 л
адиабатный 2-3, P3 = 2∙105 Па, V3 = 6 л
Молекулярная физика и термодинамика 2-1-3 ТГУ. Физика 100₽
16354

Один моль (ν = 1 моль) идеального газа переходит из начального состояния 1 в конечное состояние 3 в результате двух процессов 1-2 и 2-3. Значения давления и объема газа в состояниях 1 и 3 равны соответственно P1V1 и P3V3. Найти работу A, совершенную газом, количество теплоты Q, полученное газом и приращение внутренней энергии газа ΔU в процессе перехода из начального состояния 1 в конечное состояние 3.

№ варианта Процессы, газ, P1V1, P3V3
4 изобарный 1-2, газ N2, P1 = 105 Па, V1 = 3 л
изохорный 2-3, P3 = 2∙105 Па, V3 = 6 л
Молекулярная физика и термодинамика 2-1-4 ТГУ. Физика 100₽
16356

Один моль (ν = 1 моль) идеального газа переходит из начального состояния 1 в конечное состояние 3 в результате двух процессов 1-2 и 2-3. Значения давления и объема газа в состояниях 1 и 3 равны соответственно P1V1 и P3V3. Найти работу A, совершенную газом, количество теплоты Q, полученное газом и приращение внутренней энергии газа ΔU в процессе перехода из начального состояния 1 в конечное состояние 3.

№ варианта Процессы, газ, P1V1, P3V3
5 изобарный 1-2, газ N2, P1 = 105 Па, V1 = 3 л
изотермический 2-3, P3 = 2∙105 Па, V3 = 6 л
Молекулярная физика и термодинамика 2-1-5 ТГУ. Физика 100₽
16358

Идеальный газ совершает замкнутый цикл, состоящий из трех процессов 1-2, 2-3 и 3-1, идущий по часовой стрелке. Значения давления и объема газа в состояниях 1, 2 и 3 равны соответственно P1, V1, P1 и V2. Найти термический к.п.д. цикла.

№ варианта Процессы, P1, V1, P1 и V2, газ
1 изобарный 1-2, P1 = 105 Па, V1 = 3 л
изохорный 2-3, V2 = 6 л
изотермический 3-1, газ - N2
Молекулярная физика и термодинамика 2-2-1 ТГУ. Физика 100₽
16360

Идеальный газ совершает замкнутый цикл, состоящий из трех процессов 1-2, 2-3 и 3-1, идущий по часовой стрелке. Значения давления и объема газа в состояниях 1, 2 и 3 равны соответственно P1, V1, P1 и V2. Найти термический к.п.д. цикла.

№ варианта Процессы, P1, V1, P1 и V2, газ
3 изобарный 1-2, P1 = 105 Па, V1 = 3 л
адиабатный 2-3, V2 = 6 л
изотермический 3-1, газ - N2
Молекулярная физика и термодинамика 2-3-3 ТГУ. Физика 100₽
16362

Идеальный газ совершает замкнутый цикл, состоящий из трех процессов 1-2, 2-3 и 3-1, идущий по часовой стрелке. Значения давления и объема газа в состояниях 1, 2 и 3 равны соответственно P1, V1, P1 и V2. Найти термический к.п.д. цикла.

№ варианта Процессы, P1, V1, P1 и V2, газ
4 изохорный 1-2, P1 = 105 Па, V1 = 3 л
изотермический 2-3, P2 = 2∙105 Па
изобарный 3-1, газ - N2
Молекулярная физика и термодинамика 2-2-4 ТГУ. Физика 100₽
16364

Идеальный газ совершает замкнутый цикл, состоящий из трех процессов 1-2, 2-3 и 3-1, идущий по часовой стрелке. Значения давления и объема газа в состояниях 1, 2 и 3 равны соответственно P1, V1, P1 и V2. Найти термический к.п.д. цикла.

№ варианта Процессы, P1, V1, P1 и V2, газ
5 изохорный 1-2, P1 = 105 Па, V1 = 3 л
адиабатный 2-3, P2 = 2∙105 Па
изобарный 3-1, газ - N2
Молекулярная физика и термодинамика 2-2-5 ТГУ. Физика 200₽
16366

Идеальный газ массой m совершает политропный процесс. Молярная теплоемкость газа в этом процессе C = n∙R, где R– универсальная газовая постоянная. Абсолютная температура газа в результате данного процесса возрастает в k = T2/T1 раз. Найти приращение энтропии газа в результате данного процесса.

№ варианта Газ, m, k, n
1 газ - N2, m = 200 г, k = 2, n = 7/2
Молекулярная физика и термодинамика 2-3-1 ТГУ. Физика 100₽
16368

Идеальный газ массой m совершает политропный процесс. Молярная теплоемкость газа в этом процессе C = n∙R, где R– универсальная газовая постоянная. Абсолютная температура газа в результате данного процесса возрастает в k = T2/T1 раз. Найти приращение энтропии газа в результате данного процесса.

№ варианта Газ, m, k, n
2 газ - N2, m = 300 г, k = 2, n = 7/2
Молекулярная физика и термодинамика 3-2-2 ТГУ. Физика 100₽
16370

Идеальный газ массой m совершает политропный процесс. Молярная теплоемкость газа в этом процессе C = n∙R, где R– универсальная газовая постоянная. Абсолютная температура газа в результате данного процесса возрастает в k = T2/T1 раз. Найти приращение энтропии газа в результате данного процесса.

№ варианта Газ, m, k, n
3 газ - N2, m = 200 г, k = 3, n = 7/2
Молекулярная физика и термодинамика 2-3-3 ТГУ. Физика 100₽
16372

Идеальный газ массой m совершает политропный процесс. Молярная теплоемкость газа в этом процессе C = n∙R, где R– универсальная газовая постоянная. Абсолютная температура газа в результате данного процесса возрастает в k = T2/T1 раз. Найти приращение энтропии газа в результате данного процесса.

№ варианта Газ, m, k, n
5 газ - He, m = 200 г, k = 2, n = 7/2
Молекулярная физика и термодинамика 2-3-5 ТГУ. Физика 100₽
16374


Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.

№ варианта ρ0, d
9 ρ0 = 2 нКл/м3, d = 40 см
Электростатика 4-3-9 ТГУ. Физика 200₽
16376


На гладком горизонтальном полу лежит доска массой M = 3 кг, а на ней - брусок массой m = 1 кг.

На гладком горизонтальном полу лежит доска массой M = 3 кг, а на ней - брусок массой m = 1 кг. Коэффициент трения между бруском и доской µ = 0,6. В начальный момент брусок и доска покоятся относительно пола. К бруску прикладывают горизонтальную силу F = 7 Н. Определить количество тепла Q, которое выделится за время t = 1 с движения бруска и доски вследствие трения между ними. Найти также КПД силы F, считая полезной работу, затраченную на разгон бруска.

Механика 100₽
16378

Мальчик съезжает на санках без начальной скорости с горки высотой H = 5 м по кратчайшему пути и приобретает у подножья горки скорость v = 6 м/с. Какую минимальную работу необходимо затратить, чтобы втащить санки массой m = 7 кг на горку от её подножья, прикладывая силу вдоль поверхности горки?

Механика 150₽
16384


Два точечных заряда q<sub>1</sub> и q<sub>2</sub> находятся в вакууме на расстоянии r друг от друга (рис. 1). Найти модуль напряженности

Два точечных заряда q1 и q2 находятся в вакууме на расстоянии r друг от друга (рис. 1). Найти модуль напряженности электричеcкого поля, создаваемого этими зарядами, в точке A, находящейся на расстоянии a от первого заряда и на расстоянии b от второго заряда.

№ варианта q1, q2, r, a, b
1 q1 = 2 нКл, q2 = -3 нКл, r = 10 см, a = 5 см, b = 7 см
Электростатика 4-1-1 ТГУ. Физика 75₽
16386


Два точечных заряда q<sub>1</sub> и q<sub>2</sub> находятся в вакууме на расстоянии r друг от друга (рис. 1). Найти модуль напряженности

Два точечных заряда q1 и q2 находятся в вакууме на расстоянии r друг от друга (рис. 1). Найти модуль напряженности электричеcкого поля, создаваемого этими зарядами, в точке A, находящейся на расстоянии a от первого заряда и на расстоянии b от второго заряда.

№ варианта q1, q2, r, a, b
2 q1 = -2 нКл, q2 = -1 нКл, r = 10 см, a = 8 см, b = 7 см
Электростатика 4-1-2 ТГУ. Физика 75₽
16388


Два точечных заряда q<sub>1</sub> и q<sub>2</sub> находятся в вакууме на расстоянии r друг от друга (рис. 1). Найти модуль напряженности

Два точечных заряда q1 и q2 находятся в вакууме на расстоянии r друг от друга (рис. 1). Найти модуль напряженности электричеcкого поля, создаваемого этими зарядами, в точке A, находящейся на расстоянии a от первого заряда и на расстоянии b от второго заряда.

№ варианта q1, q2, r, a, b
3 q1 = 1 нКл, q2 = 3 нКл, r = 7 см, a = 3 см, b = 5 см
Электростатика 4-1-3 ТГУ. Физика 75₽
16390


Два точечных заряда q<sub>1</sub> и q<sub>2</sub> находятся в вакууме на расстоянии r друг от друга (рис. 1). Найти модуль напряженности

Два точечных заряда q1 и q2 находятся в вакууме на расстоянии r друг от друга (рис. 1). Найти модуль напряженности электричеcкого поля, создаваемого этими зарядами, в точке A, находящейся на расстоянии a от первого заряда и на расстоянии b от второго заряда.

№ варианта q1, q2, r, a, b
4 q1 = 5 нКл, q2 = -3 нКл, r = 7 см, a = 3 см, b = 5 см
Электростатика 3-1-4 ТГУ. Физика 75₽
16392


Два точечных заряда q<sub>1</sub> и q<sub>2</sub> находятся в вакууме на расстоянии r друг от друга (рис. 1). Найти модуль напряженности

Два точечных заряда q1 и q2 находятся в вакууме на расстоянии r друг от друга (рис. 1). Найти модуль напряженности электричеcкого поля, создаваемого этими зарядами, в точке A, находящейся на расстоянии a от первого заряда и на расстоянии b от второго заряда.

№ варианта q1, q2, r, a, b
5 q1 = -1 нКл, q2 = -2 нКл, r = 9 см, a = 3 см, b = 7 см
Электростатика 4-1-5 ТГУ. Физика 75₽
16394


Точечный заряд q =  –1 нКл массой m = 1 г, подвешенный в поле силы тяжести на невесомой нерастяжимой нити длиной l = 50 см, вращается в

Точечный заряд q = –1 нКл массой m = 1 г, подвешенный в поле силы тяжести на невесомой нерастяжимой нити длиной l = 50 см, вращается в горизонтальной плоскости (рис. 2) по окружности радиусом r. Точка A подвеса нити находится на вертикальном бесконечно длинном стержне, равномерно заряженном с линейной плотностью заряда λ. Найти частоту n вращения заряда вокруг стержня. Ускорение свободного падения g = 9,81 м/c2, электрическая постоянная ε0 = 8,85·10-12 Ф/м.

№ варианта r, λ
1 r = 45 см, λ = 2 нКл/м
Электростатика 4-2-1 ТГУ. Физика 100₽
16396


Точечный заряд q =  –1 нКл массой m = 1 г, подвешенный в поле силы тяжести на невесомой нерастяжимой нити длиной l = 50 см, вращается в

Точечный заряд q = –1 нКл массой m = 1 г, подвешенный в поле силы тяжести на невесомой нерастяжимой нити длиной l = 50 см, вращается в горизонтальной плоскости (рис. 2) по окружности радиусом r. Точка A подвеса нити находится на вертикальном бесконечно длинном стержне, равномерно заряженном с линейной плотностью заряда λ. Найти частоту n вращения заряда вокруг стержня. Ускорение свободного падения g = 9,81 м/c2, электрическая постоянная ε0 = 8,85·10-12 Ф/м.

№ варианта r, λ
2 r = 40 см, λ = 2 нКл/м
Электростатика 4-2-2 ТГУ. Физика 100₽
16398


Точечный заряд q =  –1 нКл массой m = 1 г, подвешенный в поле силы тяжести на невесомой нерастяжимой нити длиной l = 50 см, вращается в

Точечный заряд q = –1 нКл массой m = 1 г, подвешенный в поле силы тяжести на невесомой нерастяжимой нити длиной l = 50 см, вращается в горизонтальной плоскости (рис. 2) по окружности радиусом r. Точка A подвеса нити находится на вертикальном бесконечно длинном стержне, равномерно заряженном с линейной плотностью заряда λ. Найти частоту n вращения заряда вокруг стержня. Ускорение свободного падения g = 9,81 м/c2, электрическая постоянная ε0 = 8,85·10-12 Ф/м.

№ варианта r, λ
3 r = 30 см, λ = 2 нКл/м
Электростатика 4-2-3 ТГУ. Физика 100₽
16400


Точечный заряд q =  –1 нКл массой m = 1 г, подвешенный в поле силы тяжести на невесомой нерастяжимой нити длиной l = 50 см, вращается в

Точечный заряд q = –1 нКл массой m = 1 г, подвешенный в поле силы тяжести на невесомой нерастяжимой нити длиной l = 50 см, вращается в горизонтальной плоскости (рис. 2) по окружности радиусом r. Точка A подвеса нити находится на вертикальном бесконечно длинном стержне, равномерно заряженном с линейной плотностью заряда λ. Найти частоту n вращения заряда вокруг стержня. Ускорение свободного падения g = 9,81 м/c2, электрическая постоянная ε0 = 8,85·10-12 Ф/м.

№ варианта r, λ
4 r = 20 см, λ = 2 нКл/м
Электростатика 4-2-4 ТГУ. Физика 100₽
16402


Точечный заряд q =  –1 нКл массой m = 1 г, подвешенный в поле силы тяжести на невесомой нерастяжимой нити длиной l = 50 см, вращается в

Точечный заряд q = –1 нКл массой m = 1 г, подвешенный в поле силы тяжести на невесомой нерастяжимой нити длиной l = 50 см, вращается в горизонтальной плоскости (рис. 2) по окружности радиусом r. Точка A подвеса нити находится на вертикальном бесконечно длинном стержне, равномерно заряженном с линейной плотностью заряда λ. Найти частоту n вращения заряда вокруг стержня. Ускорение свободного падения g = 9,81 м/c2, электрическая постоянная ε0 = 8,85·10-12 Ф/м.

№ варианта r, λ
5 r = 10 см, λ = 2 нКл/м
Электростатика 4-2-5 ТГУ. Физика 100₽
16404


Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.

№ варианта ρ0, d
1 ρ0 = 1 нКл/м3, d = 10 см
Электростатика 4-3-1 ТГУ. Физика 200₽
16406


Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.

№ варианта ρ0, d
2 ρ0 = 1 нКл/м3, d = 20 см
Электростатика 4-3-2 ТГУ. Физика 200₽
16408


Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.

№ варианта ρ0, d
3 ρ0 = 1 нКл/м3, d = 30 см
Электростатика 4-3-3 ТГУ. Физика 200₽
16410


Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.

№ варианта ρ0, d
4 ρ0 = 1 нКл/м3, d = 40 см
Электростатика 4-3-4 ТГУ. Физика 200₽
16412


Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.

№ варианта ρ0, d
5 ρ0 = 1 нКл/м3, d = 50 см
Электростатика 4-3-5 ТГУ. Физика 200₽
16414


Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.

№ варианта ρ0, d
6 ρ0 = 2 нКл/м3, d = 10 см
Электростатика 4-3-6 ТГУ. Физика 200₽
16416


Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.

№ варианта ρ0, d
7 ρ0 = 2 нКл/м3, d = 20 см
Электростатика 4-3-7 ТГУ. Физика 200₽
16418


Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.

№ варианта ρ0, d
8 ρ0 = 2 нКл/м3, d = 30 см
Электростатика 4-3-7 ТГУ. Физика 200₽
16420


Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.

№ варианта ρ0, d
10 ρ0 = 2 нКл/м3, d = 50 см
Электростатика 4-3-10 ТГУ. Физика 200₽
16432

В цилиндре под поршнем находится жидкость и ее насыщенный пар. При изотермическом расширении объем пара увеличился в 8,4 раза, а давление уменьшилось в 2,1 раза. Найти отношение массы жидкости к массе пара до расширения.

Молекулярная физика и термодинамика 50₽
16434

На горизонтальной поверхности находится брусок. Коэффициент трения между бруском и поверхностью 0,2. Если к бруску приложить силу F, направленную вверх под углом 30° к горизонту, то брусок будет двигаться по столу равномерно и прямолинейно. Найти ускорение бруска, если к нему приложить в том же направлении силу 1,3F. Принять g = 10 м/с2.

Механика 75₽

Страницы