Онлайн-магазин готовых решений

Вы можете мгновенно получить на свой е-мэйл решение любой из этих задач, оплатив её стоимость через онлайн-сервис на нашем сайте. Подробные инструкции по оплате можно увидеть, кликнув на ссылку номера задачи.
Если найти нужную задачу не удаётся, Вы можете оформить Заказ.

Как использовать поиск
Всего задач, соответствующих запросу: 8052
Номер Условие задачи Предмет Задачник Цена
9906

Какую емкость C нужно подключить к катушке индуктивностью L = 0,001 Гн, чтобы полученный колебательный контур был настроен в резонанс с электромагнитной волной, длина которой λ = 300 м? Скорость света c = 3∙108 м/c.

Электромагнетизм 3.5.19 Физика. Решение сложных задач 50₽
9908

Два баллона соединены не проводящей тепло тонкой трубкой. Объемы баллонов V1 = 12∙10−2 м3, V2 = 8∙10−2 м3. В баллонах находится идеальный газ в количестве ν = 3 моль. Первый баллон поддерживается при температуре t1 = 0°С. До какой температуры нужно нагреть второй баллон, чтобы в нем осталась 1/3 общего количества газа? Каким будет давление в сосудах?

Молекулярная физика и термодинамика 35₽
9910

Мяч бросили с начальной скоростью 22 м/c под углом 60° к горизонту. Скорость мяча будет направлена под углом 45° к горизонту дважды во время полёта. Через какой промежуток времени это случится во второй раз?

Механика 50₽
9912

Во сколько раз изменится концентрация молекул газа, если изобарически уменьшить абсолютную температуру в a = 7 раз, а затем количество газа уменьшить в b = 14 раз при том же давлении?

Молекулярная физика и термодинамика 30₽
9914

Через свинцовую проволоку диаметром d = 0.2 мм пропускается ток I = 0.5 А. Какой промежуток времени пройдет до того момента, когда проволочка начнет плавиться?
Удельная теплоемкость свинца 126 Дж/(кг×К), удельное сопротивление 0.22 мкОм∙м, плотность 11.3 г/см3, температура плавления t = 327 °С. Пренебречь потерей теплоты во внешнее пространство. Принять начальную температуру проволочки равной 0 °С.

Постоянный ток 50₽
9916

Через свинцовую проволоку диаметром d = 0.2 мм пропускается ток I = 0.5 А. Удельная теплоемкость свинца 126 Дж/(кг∙К), удельное сопротивление 0.22 мкОм∙м, плотность 11,3 г/см3, температура плавления – t = 327° С. Пренебречь потерей теплоты во внешнее пространство. Принять начальную температуру проволочки равной 0° С. Какой промежуток времени пройдет до начала плавления проволоки, если по ней идет ток I = 0.5∙cos(100πt) A.

Электромагнетизм 50₽
9918

Две частицы массой 3∙10-9 кг и 6∙10-9 кг и зарядом по 3 мкКл помещены в вакууме на расстоянии 1 см друг от друга и затем свободно разлетаются под действием сил электростатического отталкивания. Определить максимальную скорость частицы большей массы после разлета.

Электростатика 50₽
9920

Два контура в виде равностороннего треугольника и окружности радиусом 20 см расположены в двух взаимно перпендикулярных плоскостях. Центр окружности совпадает с одной из вершин треугольника. Сторона треугольника равна 20 см. В контурах протекают равные по величине токи силой 5 А. Определить (в мкТл) значение магнитной индукции в точке, совпадающей с центром окружности.

Электромагнетизм 300₽
9922

Вычислить (в мДж) энергию магнитного поля соленоида, по обмотке которого течет ток 2 A. Обмотка выполнена в один слой из проволоки диаметром 0.8 мм, витки плотно прилегают друг к другу, объем соленоида 1500 см3, сердечник немагнитный.

Электромагнетизм 50₽
9924

Рамка гальванометра, состоящая из 250 витков тонкого провода, подвешена на упругой нити в однородном магнитном поле, индукция которого равна 0,3 Тл. Плоскость рамки параллельна направлению поля, а ее площадь равна 2 см2. При пропускании через рамку тока 6 мкA она повернулась на 30º. Какая (в нДж) при этом была совершена работа?

Электромагнетизм 100₽
9926

Катушка радиусом 5 см, имеющая 100 витков, находится в магнитном поле. Определить среднее значение ЭДС индукции в этой катушке, если индукция магнитного поля увеличится в течении 0,5 с от 0 до 1,5 Тл.

Электромагнетизм 30₽
9928

ЭДС самоиндукции, возникающая в цепи с индуктивностью 0,4 Гн, изменяется с течением времени по закону ℇ = 20 + 8t В. Найти по какому закону изменяется ток в цепи.

Электромагнетизм 20₽
9930




Дан цикл в координатах p,V. Определить работу A, совершаемую газом в данном цикле.

Молекулярная физика и термодинамика 20₽
9932




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.15 -исходные данные приведены в таблице 2.

Номер варианта P1, кН P2, кН P3, кН M, кНм a, м b, м α, град
C2.17 9 5 0 6 1.6 1.6 30°
Теоретическая механика C2.17_3 Теоретическая механика 300₽
9934

Материальная точка движется по окружности радиусом 2 м в соответствии с уравнением для угла поворота φ=3+2t. Определить величину линейной скорости точки.

Механика 15₽
9936

Тело массой 10 кг находится на горизонтальной плоскости. На тело действует сила 50 Н, направленная под углом 30° к горизонту. Определит, силу трения, если коэффициент трения 0,2. g = 10 м/с2.

Механика 15₽
9938

В вершинах квадрата размещены ABCD соответственно массы 12 г, 9 г, 2 г и 4 г. Стороны квадрата равны 8 см. На каком расстоянии (в см) от вершины A находится центр тяжести системы?

Механика 25₽
9940

Шарик массой 300 г свободно упал на горизонтальную площадку, имея в момент падения скорость 20 м/c. Найдите изменение импульса шарика при абсолютно упругом ударе. В ответе укажите модуль подученной величины

Механика 15₽
9944

Камень брошен под углом 60° к горизонту. Как относятся между собой начальная кинетическая энергия камня с его кинетической энергией в верхней точке траектории?

Механика 20₽
9946

Полый цилиндр массой 0,12 кг и радиусом 10 см катится по горизонтальной поверхности. Определить момент инерции цилиндра относительно мгновенной оси вращения.

Механика 50₽
9948

Однородный диск радиусом 0,1 м и массой 5 кг вращается вокруг оси, проходящей через его центр перпендикулярно его плоскости. Зависимость угловой скорости от времени имеет вид: ω = 10 + 8t. Найдите величину касательной силы, приложенной к ободу диска.

Механика 50₽
9950

Маховик, имеющий вид диска радиусом 30 см и массой 5 кг. Может вращаться вокруг горизонтальной оси. К его цилиндрической поверхности прикреплен конец нерастяжимой нити, к другому концу которой подвешен груз массой 0,2 кг. Груз был приподнят (так, что нить провисла) и отпущен. Упав свободно с высоты 1 м, груз натянул нить, благодаря чему привел маховик во вращение. Какую угловую скорость получил маховик, и какая энергия перешла в тепло в момент резкого натяжения нити? Нить жесткая, но неупругая.

Механика 75₽
9952

Мотор подъемного крана мощностью 1500 Вт поднимает груз со скоростью 0,05 м/с. Какой массы груз может поднимать он при данной скорости, если его КПД 80%?

Механика 30₽
9954

Определите изменение энергии релятивистской частицы, соответствующее изменению ее массы на 91∙10-31 кг.

Механика 15₽
9958

Задана функция двух переменных $Z=x^2-2*x+y^2+3$. Найти:
а) Наименьшее и наибольшее значение функции в ограниченной области $D: x \ge 0; y \ge -2; x+y \le 5$;
б) Вектор $\overrightarrow{gradZ_A}$ - градиент функции Z(x,y) в точке А(2,2). Область D и вектор $\overrightarrow{gradZ_A}$ изобразить на чертеже.

Дифференциальное исчисление функций нескольких переменных 100₽
9960

Задана функция двух переменных $Z=x^2+y^2-4*y+1$. Найти:
а) Наименьшее и наибольшее значение функции в ограниченной области $D: x \ge -1; y \ge 0; x+y \le 4$;
б) Вектор $\overrightarrow{gradZ_A}$ - градиент функции Z(x,y) в точке А(1,1). Область D и вектор $\overrightarrow{gradZ_A}$ изобразить на чертеже.

Дифференциальное исчисление функций нескольких переменных 100₽
9962

Задана функция двух переменных $Z=x^2+4*x+y^2-4$. Найти:
а) Наименьшее и наибольшее значение функции в ограниченной области $D:x \le 0; y \ge -1; y-x \le 4$;
б) Вектор $\overrightarrow{gradZ_A}$ - градиент функции Z(x,y) в точке A(-1,1). Область D и вектор $\overrightarrow{gradZ_A}$ изобразить на чертеже.

Дифференциальное исчисление функций нескольких переменных 100₽
9964

Задана функция двух переменных $Z=x^2+y^2+2*y+5$. Найти:
а) Наименьшее и наибольшее значение функции в ограниченной области $D: x \ge -1; y \ge -2; x+y \le 3$;
б) Вектор $\overrightarrow{gradZ_A}$ - градиент функции Z(x,y) в точке А(1,1). Область D и вектор $\overrightarrow{gradZ_A}$ изобразить на чертеже.

Дифференциальное исчисление функций нескольких переменных 100₽
9966

Задана функция двух переменных $Z=2*x-x^2-y^2+2$. Найти:
а) Наименьшее и наибольшее значение функции в ограниченной области $D: x \ge0; y \ge -2; x \le 3-y$;
б) Вектор $\overrightarrow{gradZ_A}$ - градиент функции Z(x,y) в точке A(2,1). Область D и вектор $\overrightarrow{gradZ_A}$ изобразить на чертеже.

Дифференциальное исчисление функций нескольких переменных 100₽
9968

Задана функция двух переменных $Z=4*y-x^2-y^2+1$. Найти:
а) Наименьшее и наибольшее значение функции в ограниченной области $D: x \ge -2; y \ge 0; y \le 4-x$;
б) Вектор $\overrightarrow{gradZ_A}$ - градиент функции Z(x,y) в точке А(-2,1). Область D и вектор $\overrightarrow{gradZ_A}$ изобразить на чертеже.

Дифференциальное исчисление функций нескольких переменных 100₽
9970

Задана функция двух переменных $Z=x^2+y^2+6$. Найти:
а) Наименьшее и наибольшее значение функции в ограниченной области $D: y \ge -1; x+ y \le 3; 2x-y+3 \ge 0$;
б) Вектор $\overrightarrow{gradZ_A}$ - градиент функции Z(x,y) в точке А(1,1). Область D и вектор $\overrightarrow{gradZ_A}$ изобразить на чертеже.

Дифференциальное исчисление функций нескольких переменных 100₽
9972

Задана функция двух переменных $Z=2-x^2-y^2$. Найти:
а) Наименьшее и наибольшее значение функции в ограниченной области $D: y \ge -2; y-2x \le 2; x+y \le 2$;
б) Вектор $\overrightarrow{gradZ_A}$ - градиент функции Z(x,y) в точке A(-1,-1). Область D и вектор $\overrightarrow{gradZ_A}$ изобразить на чертеже.

Дифференциальное исчисление функций нескольких переменных 100₽
9974

Задана функция двух переменных $Z=4-x^2-y^2$. Найти:
а) Наименьшее и наибольшее значение функции в ограниченной области $D: y \ge -1; y-x \le 2; x+y \le 2$;
б) Вектор $\overrightarrow{gradZ_A}$ - градиент функции Z(x,y) в точке A(2,-1). Область D и вектор $\overrightarrow{gradZ_A}$ изобразить на чертеже.

Дифференциальное исчисление функций нескольких переменных 100₽
9976

Задана функция двух переменных $Z=x^2+y^2+4$. Найти:
а) Наименьшее и наибольшее значение функции в ограниченной области $D: y \ge -2; y+2x \le 2; y-x \le2$;
б) Вектор $\overrightarrow{gradZ_A}$ - градиент функции Z(x,y) в точке A(1,-1). Область D и вектор $\overrightarrow{gradZ_A}$ изобразить на чертеже.

Дифференциальное исчисление функций нескольких переменных 100₽
9998

Какова максимальная скорость электронов, выбиваемых из металлической пластины светом с длиной волны λ = 3∙10-7 м, если красная граница фотоэффекта Aкр = 540 нм?

Фотоэффект 4.1.11 Физика. Решение сложных задач 50₽
10000

Фотоны, имеющие энергию E = 5 эВ, выбивают электроны с поверхности металла. Работа выхода электронов из металла равна Авых = 4,7 эВ. Какой импульс приобретает электрон при вылете с поверхности металла?

Фотоэффект 4.1.12 Физика. Решение сложных задач 50₽
10002

При облучении металла светом с длиной волны λ = 245 нм наблюдается фотоэффект. Работа выхода электрона из металла равна Aвых = 2,4 эВ. Рассчитайте величину напряжения, которое нужно приложить к металлу, чтобы уменьшить максимальную скорость вылетающих фотоэлектронов в 2 раза.

Фотоэффект 4.1.13 Физика. Решение сложных задач 50₽
10004

Фотокатод, покрытый кальцием (работа выход Aвых = 4,42∙10-19 Дж, освещается светом с длиной волн λ = 300 нм. Вылетевшие из катода электроны попадают в однородное магнитное поле с индукцией B = 8,3∙10-4 Тл перпендикулярно линиям индукции этого поля. Каков максимальный радиус R окружности, по которой движутся электроны?

Фотоэффект 4.1.14 Физика. Решение сложных задач 20₽
10006

В вакууме находятся два покрытых кальцием электрода, к которым подключен конденсатор емкостью C = 8000 пФ. При длительном освещении катода светом с частотой ν = 1015 Гц фототок, возникший вначале, прекращается. Работа выхода электронов из кальция Aвых = 4,42∙10-19 Дж. Какой заряд q при этом оказывается на обкладках конденсатора?

Фотоэффект 4.1.15 Физика. Решение сложных задач 50₽
10008

Две параллельные друг другу металлические пластины, расстояние между которыми d = 1 см много меньше их размеров, подключены к источнику с напряжением U = 12,5 В. Сначала положительно заряженную пластину облучают светом частотой ν1 = 7∙1014 Гц, а затем - светом частотой ν2 = 4∙1014 Гц. На какую величину Δl изменяется минимальное расстояние, на которое электроны могут приблизиться к поверхности отрицательно заряженной пластины, при изменении частоты света от ν1 до ν2? Частота света, соответствующая красной границе фотоэффекта, меньше ν2. Модуль заряда электрона e = 1,6∙10-19 Кл, постоянная Планка h = 6,62∙10-34 Дж∙c.

Фотоэффект 4.1.16 Физика. Решение сложных задач 50₽
10010

Шар радиусом R = 1 см из вольфрама, покрытый тонким слоем цезия, освещают аргоновым лазером, дающим излучение с длиной волны λ1 = 457 нм. Какой заряд может приобрести шар, если красная граница фотоэффекта для цезия на вольфраме

Фотоэффект 4.1.17 Физика. Решение сложных задач 50₽
10012

Измерения зависимости напряжения отсечки фототока (т.е. напряжения, при котором фототок прекращается) от длины волны света, падающего на цезиевую пластину Cs, производятся по схеме, изображенной на рисунке. При освещении светом с длиной волны λ1 = 0,4 мкм напряжение отсечки составило U1 = 1,19 B, при λ2 = 0,5 мкМ - U2 = 0,57 В. Определить по результатам этого опыта длину волны λmax, соответствующую красной границе фотоэффекта для цезия.

Фотоэффект 4.1.18 Физика. Решение сложных задач 50₽
10014

Катод фотоэлемента облучается светом с длиной волны λ = 0,35 мкм. Какова может быть максимальная величина тока фотоэлемента I, если поглощаемая световая мощность составляет N = 2 мВт? Постоянная Планка h = 6,62∙10-34 Дж с, модуль заряда электрона e = 1,6∙10-19 Кл, скорость света c = 3∙108 м/c.

Фотоэффект 4.1.19 Физика. Решение сложных задач 50₽
10016

Кристалл рубина облучается вспышкой света длительностью τ = 10-3 с и мощностью N = 200 кВт. Длина волны света λ = 0,7 мкм, кристалл поглощает η = 10% энергии излучения. Вычислить количество квантов света n, поглощенных кристаллом. Скорость света с = 3∙108 м/с, постоянная Планка h = 6,62∙10-34 Дж∙с.

Фотоэффект 4.1.20 Физика. Решение сложных задач 50₽
10018

Проводя облучение катода фотоэлемента пучком света мощностью N1 = 1,5 мВт с длиной волны λ1 = 400 нм, измерили величину тока насыщения. Затем катод фотоэлемента начали облучать светом с длиной волны λ2 = 500 нм. Какой должна быть мощность N2 падающего на катод света, чтобы ток насыщения достиг той же величины, что и в первом случае? Квантовый выход фотоэффекта, т.е. отношение числа вырванных из катода электронов к числу падающих на его поверхность фотонов, в первом случае равен η1 = 0,35, а во втором случае равен η2 = 0,3.

Фотоэффект 4.1.21 Физика. Решение сложных задач 50₽
10020

Космический корабль, находящийся в состоянии покоя, проводит сеанс связи с Землей, направляя в ее сторону лазерный луч. На какое расстояние S от первоначального положения сместится корабль к окончанию сеанса связи, если мощность лазерного луча N = 60 Вт, масса корабля М = 10 тонн, продолжительность сеанса τ = 1 час? Скорость света c = 3∙108 м/с. Влиянием всех небесных тел пренебречь.

Фотоэффект 4.1.22 Физика. Решение сложных задач 50₽
10022

При движении электрона в электрическом поле его длина волны де Бройля увеличилась от λ1 = 0,75 нм до λ2 = 1,5 НМ. Насколько при этом уменьшилась кинетическая энергия электрона? Ответ выразить в электронвольтах.

Фотоэффект 4.1.23 Физика. Решение сложных задач 50₽
10024

Какую кинетическую энергию нужно сообщить электрону для того, чтобы его длина волны де Бройля стала равна длине волны электромагнитного излучения с энергией фотона Е = 2 кэВ? Ответ выразить в электронвольтах.

Фотоэффект 4.1.24 Физика. Решение сложных задач 50₽
10028

На горизонтальном, гладком и круглом желобе лежат два маленьких тела с массами m1 = m и m2 = 2m, могущие скользить вдоль желоба. Между массами находится сжатая нитью пружина, не скрепленная с массами. В момент пережигания нити сжатая пружина (пренебрежимо малой массы) расталкивает оба тела в противоположные стороны, сама же остается на месте. Когда оба тела встретятся, они столкнутся друг с другом. Спрашивается, в каком месте желоба (относительно m1) столкновение будет иметь место? Ответ выразить в угловых единицах - градусах.

Механика 2.68. Физика. Волькенштейн 30₽
10030

Вычислить интеграл $$\int{e^x 2^x}dx$$

Неопределённый интеграл 20₽

Страницы