Онлайн-магазин готовых решений

Вы можете мгновенно получить на свой е-мэйл решение любой из этих задач, оплатив её стоимость через онлайн-сервис на нашем сайте. Подробные инструкции по оплате можно увидеть, кликнув на ссылку номера задачи.
Если найти нужную задачу не удаётся, Вы можете оформить Заказ.

Как использовать поиск
Всего задач, соответствующих запросу: 6175
Номер Предмет Условие задачи Задачник Цена
3411 Алгебра

Дана система линейных уравнений. Доказать ее совместность и решить двумя способами: 1) методом Гаусса; 2) средствами матричного исчисления.
$$\left\{
\begin{array}{lcl}
x_1+x_2-x_3 & = & 1\\
8x_1+3x_2-6x_3 & = & 2\\
4x_1+x_2-3x_3 & = & 3
\end{array} \right.$$

50р.
3412 Алгебра

Даны два линейных преобразования. Средствами матричного исчисления найти преобразование, выражающее $x''_1, x''_2, x''_3$ через $x_1, x_2, x_3$.
$$\left\{ \begin{array}{lcl}
x^{'}_1 & = & 4x_1+3x_2+8x_3\\
x^{'}_2 & = & 6x_1+9x_2+x_3\\
x^{'}_3 & = & 2x_1+x_2+8x_3
\end{array} \right., \left\{ \begin{array}{lcl}
x^{''}_1 & = & -1x_1'+8x_2'-2x_3'\\
x^{''}_2 & = & -4x_1'+3x_2'+2x_3'\\
x^{''}_3 & = & 3x_1'-8x_2'+5x_3'
\end{array} \right.$$

50р.
3413 Алгебра

Найти собственные значения и собственные векторы линейного преобразования, заданного в некотором базисе матрицей: $$A_\varphi=\left(\begin{array}{ccc}
7 & 0 & 0\\
10 & -19 & 10\\
12 & -24 & 13
\end{array}\right)$$

30р.
3414 Алгебра

Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка $4x^2+24xy+11y^2=20$.

30р.
3415 Алгебра

Экспериментально получены пять значений искомой функции y=f(x) при пяти значениях аргумента, которые записаны в таблице. Методом наименьших квадратов найти функцию y=f(x) в виде y=a∙x+b.

50р.
3416 Алгебра

Дана система линейных уравнений. Доказать ее совместность и решить тремя способами: 1) методом Крамера; 2) методом Гаусса; 3) средствами матричного исчисления.
$$\left\{
\begin{array}{lcl}
x_1-4x_2-2x_3 & = & -3\\
3x_1+x_2+x_3 & = & 5\\
3x_1-5x_2-6x_3 & = & -9
\end{array} \right.$$

50р.
3417 Алгебра

Решить систему линейных уравнений по правилу Крамера
$$\left\{
\begin{array}{lcl}
2x-y+4z & = & 5\\
6x+3y-2z & = & 2\\
4x+4y-z & = & 8
\end{array} \right.$$

30р.
3418 Алгебра

Решить систему линейных уравнений по правилу Гаусса: $$\left\{
\begin{array}{lcl}
2x-y+4z & = & 5\\
6x+3y-2z & = & 2\\
4x+4y-z & = & 8
\end{array} \right.$$

30р.
3419 Алгебра

Решить систему линейных уравнений матричным методом: $$\left\{
\begin{array}{lcl}
2x-y+4z & = & 5\\
6x+3y-2z & = & 2\\
4x+4y-z & = & 8
\end{array} \right.$$

30р.
3420 Алгебра

При каких значениях p и q область значений функции $y=4\sqrt{x-p}+3\sqrt{q-x}$ совпадает с её областью определения?

50р.
3421 Алгебра

Решить систему линейных уравнений методом Крамера $$\left\{
\begin{array}{lcl}
9x_1+7x_2-x_3 & = & -41\\
-7x_1+4x_2+6x_3 & = & -27\\
x_1+x_2-7x_3 & = & -41
\end{array} \right.$$

30р.
3422 Алгебра

Решить систему линейных уравнений методом Гаусса $$\left\{
\begin{array}{lcl}
-4x_1-x_2-3x_3+5x_4 & = & 57\\
7x_1-4x_2-7x_3+2x_4 & = & -75\\
5x_1-6x_2+9x_3-9x_4 & = & -111\\
-2x_1-9x_2-x_3-5x_4 & = & -65
\end{array} \right.$$

50р.
3423 Алгебра

Вычислить определитель $$\begin{vmatrix}
-5 & 1 & -2& -5 \\
3 & 2 & -2 & 3\\
5 & -2 & -1 & 5\\
-5 & 4 & -2 & -1
\end{vmatrix}$$

50р.
3424 Алгебра

Найти обратную матрицу $$A=\begin{pmatrix}
-5 & 2 & 1 \\
5 & -2 & -2 \\
-2 & -1 & 5
\end{pmatrix}$$

30р.
3425 Алгебра

Найти собственные числа и собственные векторы матрицы $$A=\begin{pmatrix}
-1&1&4 \\
-2&2&4 \\
4&5&5
\end{pmatrix}$$

50р.
3426 Алгебра

В задаче, используя метод Гаусса, найти решение системы или доказать ее несовместимость. $$\left\{
\begin{array}{lcl}
x_1-2x_2+x_3+x_4 & = & 1\\
x_1+0x_2+x_3+3x_4 & = & 1\\
-x_1+2x_2+x_3+x_4 & = & -1\\
\end{array} \right.$$

30р.
3427 Алгебра

В задаче дана матрица $$A=\begin{pmatrix}
2 & 1 & 1 \\
3 & 2 & 1 \\
1 & 2 & 0
\end{pmatrix}.$$
Найти обратную матрицу и проверить, что $A^{-1} \cdot A = A \cdot A^{-1}=E$. При помощи обратной матрицы найти решение $x_1, x_2, x_3$ системы, записанной в матричной форме $A \cdot X=B$, где $X=\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}$ и $A=\begin{pmatrix}
3 \\
-1 \\
2
\end{pmatrix}$

50р.
3428 Алгебра

Найти $x_3$ по формулам Крамера.
Дано:
$$\left\{
\begin{array}{lcl}
x_1-2x_2+x_3-x_4 & = & 5\\
3x_1+0x_2-2x_3+3x_4 & = & -1\\
-2x_1+2x_2+2x_3-4x_4 & = & 1\\
-2x_1-x_2+2x_3+x_4 & = & 3
\end{array} \right.$$

50р.
3429 Алгебра

Решить систему уравнений методом Гаусса
$$\left\{
\begin{array}{lcl}
ax-3y & = & 1\\
ax-2 & = & 2\\
\end{array} \right.$$

10р.
3430 Алгебра

Решить систему уравнений методом Гаусса
$$\left\{
\begin{array}{lcl}
2x-y+z &= &2\\
3x+2y+2z &= &-2\\
x-2y+z &= &1\\
\end{array} \right.$$

20р.
3431 Алгебра

Решить систему уравнений методом Гаусса
$$\left\{
\begin{array}{lcl}
x+2y+3z&=&5\\
2x-y-z&=&1\\
x+3y+4z&=&6\\
\end{array} \right.$$

20р.
3432 Алгебра

Решить систему уравнений
$$\left\{
\begin{array}{lcl}
2x-5y+2z&=&0\\
x+4y-3z&=&0\\
\end{array} \right.$$

5р.
3433 Алгебра

Решить систему уравнений
$$\left\{
\begin{array}{lcl}
3x+2y-z&=&0\\
2x-y+3z&=&0\\
x+3y-4z&=&0\\
\end{array} \right.$$

20р.
3434 Алгебра

Решить систему уравнений
$$\left\{
\begin{array}{lcl}
x+2y+3z&=&4\\
2x+4y+6z&=&3\\
3x+y-z&=&0\\
\end{array} \right.$$

10р.
3435 Алгебра

Решить систему уравнений
$$\left\{
\begin{array}{lcl}
x+2y+3z=4\\
2x+y-z=3\\
3x+3y+2z=7\\
\end{array} \right.$$

5р.
3436 Алгебра

Решить систему уравнений
$$\left\{
\begin{array}{lcl}
x+2y+3z=4\\
2x+y-z=3\\
3x+3y+2z=10\\
\end{array} \right.$$

5р.
3437 Алгебра

Пересекаются ли в одной точке прямые
$$\left\{
\begin{array}{lcl}
2x-3y&=&6\\
3x+y&=&9\\
x+4y&=&3\\
\end{array} \right., \left\{
\begin{array}{lcl}
2x-3y&=&6\\
3x+y&=&4\\
x+4y&=&5\\
\end{array} \right. $$

5р.
3438 Алгебра

Решить систему уравнений методом Крамера и с помощью обратной матрицы $$\left\{
\begin{array}{lcl}
2x+y+2z&=&11\\
x-y+3z&=&10\\
0x+2y+z&=&5\\
\end{array} \right.$$

30р.
3439 Алгебра

Пользуясь методом Жордана-Гаусса решить систему уравнений $$\left\{
\begin{array}{lcl}
2x_1+0x_2+x_3+3x_4&=&4\\
3x_1+2x_2+0x_3+x_4&=&1\\
5x_1+2x_2+x_3+4x_4&=&5\\
7x_1+2x_2+2x_3+7x_4&=&9\\
\end{array} \right.$$

35р.
3440 Алгебра

Найти ранг матрицы $$A=\begin{pmatrix}
1 & 2 & 3 & 2 & 1 \\
0 & 1 & 1 & 2 & 1 \\
1 & 3 & 4 & 4 & 2 \\
1 & 4 & 5 & 4 & 2 \\
\end{pmatrix}$$

5р.
3441 Алгебра

Решить уравнение $XA = B$
$$A=\begin{pmatrix}4 & 5 \\2 & 3 \\\end{pmatrix}; B=\begin{pmatrix}2 & 3 \\1 & 4 \\\end{pmatrix}.$$

30р.
3442 Алгебра

Решить кубическое уравнение методом Кардано $0,7x^3-0,775x^2-7,86x-1121=0$.

30р.
3443 Алгебра

Найти координаты вектора x в базисе $(e'_1, e'_2, e'_3)$, если он задан в базисе $(e_1,e_2,e_3)$.
$$\left\{\begin{matrix}
e'_1 & = & e_1+e_2+2/3 e_3, \\
e'_2 & = & -2e_1-e_2, \\
e'_3 & = & -e_1+e_2+e_3 \\
\end{matrix}\right.$$
${x=12,3,-1}$.

50р.
3444 Алгебра

Найти матрицу в базисе $(e'_1, e'_2, e'_3)$, где
$$\left\{\begin{matrix}
e'_1 & = & e_1-e_2+e_3, \\
e'_2 & = & -e_1+e_2-2e_3, \\
e'_3 & = & -e_1+2e_2+e_3 \\
\end{matrix}\right., $$
если она задана в базисе $(e_1, e_2, e_3)$.
$$A=\begin{pmatrix}
1 & 1 & 3 \\
1 & 0 & 1 \\
2 & 0 & 1
\end{pmatrix}$$

50р.
3445 Алгебра

Найти собственные значения и собственные векторы матрицы. $$A=\begin{pmatrix}
7 & -6 & 6 \\
4 & -1 & 4 \\
4 & -2 & 5
\end{pmatrix}$$

30р.
3446 Алгебра

Исследовать кривую второго порядка $x^2+y^2-8xy-20x+20y+1=0$ и построить её график.

50р.
3447 Дифференциальное исчисление функций нескольких переменных

Даны функция $z=f(x,y)$, точка $A(x_0,y_0)$ и вектор $\vec{a}$. Найти:
1) grad z в точке A;
2) производную в точке A по направлению вектора a.
$$z=\arcsin \frac{x^2}{y}; A(1,2), a=5\vec{i} - 12\vec{j}$$.

75р.
3448 Кратные и криволинейные интегралы

Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
$$x^4=a^2 (x^2-3y^2)$$

75р.
3449 Кратные и криволинейные интегралы

Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. Сделать чертежи данного тела и его проекции на плоскости XOY.
$$z=0;x^2+y^2=z; x^2+y^2=4$$

50р.
3450 Кратные и криволинейные интегралы

Вычислить криволинейный интеграл $$\oint_{L}^{}y dx+\frac{x}{y} dy$$ вдоль дуги L кривой $y=e^{-x}$ от точки A(0;1) до точки B(-1;e). Сделать чертеж.

30р.
3451 Дифференциальное исчисление функций нескольких переменных

Даны векторное поле $\vec{F}=(x-y+z)\vec{i}$ и плоскость $(p): -x+2y+z-4=0$, которая совместно с координатными плоскостями образует пирамиду $V$. Пусть $\sigma$ – основание пирамиды, принадлежащее плоскости $(p)$; $\lambda$ – контур, ограничивающий sigma; $n$ – нормаль к $\sigma$, направленная вне пирамиды $V$. Требуется вычислить.
1) Поток векторного поля $F$ через поверхность $\sigma$ в направлении нормали $n$.
2) Циркуляцию векторного поля $F$ по замкнутому контуру $\sigma$ непосредственно и применив теорему Стокса к контуру $\lambda$ и ограниченной им поверхности $\lambda$ с нормалью $n$.
3) Поток векторного поля $F$ через полную поверхность пирамиды $V$ в направлении внешней нормали к её поверхности, непосредственно и применив теорему Остроградского. Сделать чертеж.

150р.
3452 Кратные и криволинейные интегралы

Проверить, является ли векторное поле $\vec{F}=(5x+4yz)\vec{i}+(5y+4xz)\vec{j}+(5z+4xy)\vec{k}$ потенциальным и соленоидальным. В случае потенциальности поля $\vec{F}$ найти его потенциал.

30р.
3453 Кратные и криволинейные интегралы

Методом Даламбера найти уравнение u=u(x;t) формы однородной бесконечной струны, определяемой волновым уравнением
$$\frac{\delta^2 u}{\delta t^2}=a^2 \frac{\delta^2 u}{\delta x^2 }$$
Если в начальный момент $t_0=0$ форма струны и скорость точки струны с абсциссой x определяются соответственно заданными функциями $u(t_0)=f(x)=\sin{x}; \frac{\delta u}{\delta t}(t_0)=F(x)=\cos{x}$

75р.
3454 Кратные и криволинейные интегралы

Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. Сделать чертежи данного тела и его проекции на плоскости XOY.
$$z=0,y+z=2, x^2+y^2=4$$

50р.
3455 Кратные и криволинейные интегралы

Найти объем тела, ограниченного указанными поверхностями: Сделать чертеж данного тела и его проекции на плоскость XOY
$$y=16\sqrt{2x}; y=\sqrt{2x}, z=0; z+x=2$$

50р.
3456 Кратные и криволинейные интегралы

Найти центр тяжести однородной пластинки, ограниченной линиями $x^2+y^2=a^2, y=0 ( y \leq 0)$

30р.
3457 Кратные и криволинейные интегралы

Найти массу кривой $r=2{e}^{-\varphi},-3\pi/2\leq\varphi \leq \pi $ с линейной плотностью $y={\varphi}^{2}$

30р.
3458 Кратные и криволинейные интегралы

Вычислить работу векторного поля $\vec F =(x+y^2+z^3)\vec{i}+(x^3+y+z)\vec{j}+(x^2+y^3+z)\vec{k}$ вдоль отрезка AB от точки A(2,4,7) до точки B(0,0,-1).

30р.
3459 Кратные и криволинейные интегралы

Вычислить циркуляцию векторного поля $\vec{F}=(x^2+xy+y^2)\vec{i}+(x^2-xy+ y^2)\vec{j}$ по контуру Г, состоящему из частей кривых $y=x^2$ и $y=-x$. Направление обхода положительное

30р.
3460 Кратные и криволинейные интегралы

Найти массу поверхности $G: z^2-4=x^2+y^2; x\geq 0; 2\leq z \leq \sqrt{5}$ с поверхностной плотностью $\gamma =3\sqrt{z^3}$

30р.

Страницы