Онлайн-магазин готовых решений

Вы можете мгновенно получить на свой е-мэйл решение любой из этих задач, оплатив её стоимость через онлайн-сервис на нашем сайте. Подробные инструкции по оплате можно увидеть, кликнув на ссылку номера задачи.
Если найти нужную задачу не удаётся, Вы можете оформить Заказ.

Как использовать поиск
Всего задач, соответствующих запросу: 889
Номер Условие задачи Предмет Задачник Ценасортировать по убыванию
14576




ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3

№ варианта Уравнение движения груза 1 S = S(t), см R2 r2 R3 r3 t1
К3.9 160t2 50 30 70 40 2
Теоретическая механика K3.9 Теоретическая механика 2 300₽
11186




ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ЦЕНТРА ТЯЖЕСТИ ОДНОРОДНОГО ТЕЛА
Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.14. Размеры ферм даны в метрах, остальных тел - в сантиметрах.

Теоретическая механика C9.14 Теоретическая механика 2 300₽
5040

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
На рис. К3.8 показаны схемы механизмов, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
02В = L4 = 0,6 м;
АД = ДВ.
Кривошип O1А вращается вокруг оси O1 с постоянной угловой скоростью ω1 = ωOA =4 с-1. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек А, В, Д, Е, угловые скорости указанных шатунов и кривошипа О2В, а также ускорение точки В.

Теоретическая механика K5.8 Теоретическая механика 2 300₽
5109




ПРИНЦИП ДАЛАМБЕРА
Барабан лебёдки радиусом r, установленной на консольной балке АВ, вращается с угловым ускорением ε. Масса поднимаемого груза – m, масса лебёдки – M. Центр тяжести лебёдки находится на расстоянии l от вертикальной стены. Момент инерции барабана лебёдки вместе с двигателем равен Ј0. Пренебрегая массами каната и самой балки, найти реакции заделки.

Теоретическая механика Д6.10 Теоретическая механика 2 300₽
6485




ПРИМЕНЕНИЕ УРАВНЕНИЙ ЛАГРАНЖА ВТОРОГО РОДА К ИЗУЧЕНИЮ ДВИЖЕНИЯ МЕХАНИЧЕСКОЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ
Тело D массой m1 = 30 кг вращается вокруг вертикальной оси O1z под действием пары сил с моментом Mz = 15∙t2 - 10∙t3. Варианты расчетных схем изображены на рисунке. При этом по желобу АВ тела D под действием внутренней силы F = 1,5(t2 + 3), направленной по касательной к желобу (управляющее воздействие), движется материальная точка М массой m2 = 5 кг. Согласно закону равенства действия и противодействия с такой же по величине силой, но направленной в противоположную сторону, точка М действует на тело D.
Используя уравнения Лагранжа второго рода составить дифференциальные уравнения движения механической системы в обобщенных координатах. Сопротивлением движению пренебречь.

Номер варианта m1, кг m2, кг a, м b, м R, м α, град Mz = Mz(t), Н∙м F = F(t), Н
30 30 5 3 1 - - 15∙t2 - 10∙t3 1.5∙(t2 + 3)
Теоретическая механика 300₽
8386

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Маховое колесо начинает вращаться равноускоренно из состояния покоя. Через 2 минуты после начала движения оно имеет угловую скорость, соответствующую 240 об/мин. Сколько оборотов сделало колесо за 3 минуты? Найти скорость и ускорение точки колеса на расстоянии 0,4 м от оси вращения в момент времени t3 = 4 мин.

Теоретическая механика K4.17 Теоретическая механика 2 300₽
14592




ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3

№ варианта Уравнение движения груза 1 S = S(t), см R2 r2 R3 r3 t1
К3.17 160t2 50 30 70 40 2
Теоретическая механика K3.17 Теоретическая механика 2 300₽
11202

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.2 3cosπt 4sinπt 5/6
Теоретическая механика K1.2 Теоретическая механика 2 300₽
5051




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции. Схемы конструкций указаны на рисунке С 1.8, исходные данные приведены в табл.

Номер варианта P, кН G, кН M, кНм q, кН/м l, м α, град.
C1.18 14 - 6 2 1 30°
Теоретическая механика C1.18 МИИТ. Теоретическая механика. 2012 год 300₽
14758




По призме C массой m = 7 кг могут двигаться тележки A и B массами m1 = 1 кг и m2 = 2 кг соответственно. Тележки связаны невесомой нитью, переброшенной через неподвижный блок Д. В начальный момент система находится в покое, затем тележка A начинает двигаться относительно призмы влево по закону Sотн = 5t2 (м). Определить ускорение призмы.

Теоретическая механика Д9.7 Теоретическая механика 2 300₽
12482




Для заданного механизма найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки.
OA = 30 см = 0,30 м; AB = 50 см = 0,50 м; AC = 25 см = 0,25 м; ωOA = 3 c-1.

Теоретическая механика K1.9 МИИТ. Теоретическая механика. 2012 год 300₽
5118




Тело в виде полуцилиндра скользит по горизонтальной плоскости со скоростью v = 0,2 м/с, поворачивая шарнирно закрепленный в точке А стержень АВ. Определить относительную скорость точки касания М стержня АВ, если угол α = 30°.

Теоретическая механика K7.15 Теоретическая механика 2 300₽
8236




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции. Схемы конструкций указаны на рисунке С1.15, исходные данные приведены в таблице.

Номер варианта P, кН G, кН M, кНм q, кН/м l, м α, град
C1.5 20 12 3 4 1 60°
Теоретическая механика C1.5 МИИТ. Теоретическая механика. 2012 год 300₽
8404




Звено ОА длиной 0,5 м вращается согласно уравнению φ = 4t3 рад. По дуге окружности радиуса r = 0,3 м движется точка М по закону АМ = 2rt м (рис. К 2.15). Определить абсолютную скорость точки М в момент времени t1 = π/4 c, когда угол α = 60°.

Теоретическая механика K7.5 Теоретическая механика 2 300₽
14610




ПЛОСКО-ПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Для заданного положения механизма найти скорости точек В и С, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис. К6.1-К6.20
ОА = 30 см, АВ = 40 см, АС = 20 см, ωОА = 2 с-1

Теоретическая механика K6.16 Теоретическая механика 2 300₽
11138




ТРЕНИЕ СКОЛЬЖЕНИЯ И ТРЕНИЕ КАЧЕНИЯ
Расчетные схемы даны на рис. С8.10. Дверь в купе железнодорожного вагона может скользить в горизонтальных желобах, расположенных сверху и снизу. Коэффициент трения между дверью и нижним желобом равен f. Центр тяжести двери лежит на оси симметрии. Найти наибольшую высоту h ручки двери, при которой дверь не будет перекашиваться в желобах, если ее вес равен G, а ширина равна b.

Теоретическая механика C8.10 Теоретическая механика 2 300₽
11218

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.10 3sin(πt/2) 4cos(πt/2) 0,5
Теоретическая механика K1.10 Теоретическая механика 2 300₽
5066




Стержень ВС кулисного механизма движется со скоростью v = 1 м/с. Для указанного положения механизма определить угловую скорость кулисы ОА, если расстояние ОВ = 0,7 м

Теоретическая механика K7.6 Теоретическая механика 2 300₽
13812




ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис.
OA = 40 см = 0,40 м; AB = 30 см = 0,30 м; AC = 15 см = 0,15 м; ωOA = 2 c-1.

Теоретическая механика K 6-1 Теоретическая механика 300₽
5127

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.18 5∙t - 6∙t2 2t 1
Теоретическая механика K1.18_1 Теоретическая механика 300₽
14100




ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис.
OA = 30 см = 0,30 м; AB = 30 см = 0,30 м; AC = 20 см = 0,20 м; ωOA = 4 c-1.

Теоретическая механика K1.10 МИИТ. Теоретическая механика. 2012 год 300₽
8336




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.4 -исходные данные приведены в таблице 2.

Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
С2.4 2 3 3 0,8 1,2 - 30°
Теоретическая механика C2.4 МИИТ. Теоретическая механика. 2012 год 300₽
8432




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.17, -исходные данные приведены в таблице 2.

Номер варианта Р1, кН P2, кН м M, кН∙м a, м b, м l, м α, град
С-2.17 4 5 7 1.6 1.6 0.8 30°
Теоретическая механика C2.17 МИИТ. Теоретическая механика. 2012 год 300₽
11154




Расчетные схемы даны на рис. С8.18. Найти наибольшую величину силы Tmax, при приложении которой к катушке весом P при помощи нити начнется ее качение по горизонтальной плоскости. Радиусы катушки равны r и R, а ее коэффициент трения качения равен δ.

Теоретическая механика C8.18 Теоретическая механика 2 300₽
14710




ТЕОРЕМА О ДВИЖЕНИИ ЦЕНТРА МАСС
Груз A массой m1 и груз B массой m2 соединены нитью, переброшенной через невесомый блок C, ось которого скреплена с тумбой Д массой m. Тумба может скользить без трения по горизонтальной плоскости. На какое расстояние переместится тумба, если груз A опустится на высоту h?

Теоретическая механика Д4.13 Теоретическая механика 2 300₽
11234

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.18 5t - 6t2 2t 1
Теоретическая механика K1.18 Теоретическая механика 2 300₽
5091

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.9 4t2+3 3∙t 1
Теоретическая механика K1.9_1 Теоретическая механика 300₽
13894




Тело 1 массой 6 кг может двигаться по горизонтальной направляющей. Тело 1 и однородный стержень 2 массой 3 кг и длиной l = 0,8 м опустился под действием силы тяжести и занимает вертикальное положение. В начальный момент система находилась в покое. Пренебрегая трением в оси А, найти скорость v бруска в тот момент, когда стержень проходит через вертикаль.

Теоретическая механика Д4.19 Теоретическая механика 2 300₽
5569

5569Для заданного положения механизма найти скорости точек В и С, а также угловую скорость звена, которому принадлежат эти точки.
Выполнить:
- построить механизм в масштабе;
- вычислить и построить скорость точки.

Теоретическая механика K6.10 Теоретическая механика 2 300₽
14150




ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ. ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ
Груз 1 массой m1, опускаясь вниз по призме, приводит в движение посредством нити, переброшенной через невесомый блок, груз 2 массой m2. Определить давление призмы на горизонтальную плоскость, если масса призмы равна m.

Теоретическая механика Д6.11 Теоретическая механика 2 300₽
8352




ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы (рис. С3.17) соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4

Номер варианта Номера стержней Номера стержней P1, кН P2, кН
С 3.17 1, 7, 5 2, 3 130 150

В точке А заменить подвижный шарнир на НЕ ПОДВИЖНЫЙ.

Теоретическая механика C3.17_1 Теоретическая механика 300₽
14296




К колесу радиусом r, вращающемуся с угловой скоростью ω, вокруг оси O. прижимают радиальной силой Q тормозную колодку АВ. Через T (c) после этого колесо вследствие трения остановилось. Определить значение коэффициента трения. Колесо считать однородным диском массой mт.

Теоретическая механика Д5.20 Теоретическая механика 2 300₽
14560




ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3

№ варианта Уравнение движения груза 1 S = S(t), см R2 r2 R3 r3 t1
К3.1 160t2 50 30 70 40 2
Теоретическая механика K3.1 Теоретическая механика 2 300₽
11170




Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.6. Размеры ферм даны в метрах, остальных тел - в сантиметрах.

Теоретическая механика C9.6 Теоретическая механика 2 300₽
10978




СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.12, исходные данные приведены в табл. 1.

Номер варианта Р, кН G, кН M, кН∙м q, кН∙м l, м α, град
C1.12 15 12 8 1 1,5 60°
Теоретическая механика C1.12 Теоретическая механика 2 300₽
11058




Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.

Теоретическая механика C6.10 Теоретическая механика 2 300₽
8520




Оси колеса радиусом r, находящемуся на горизонтальной плоскости, сообщили скорость V0. Коэффициент трения качения равен δ. Определить путь, пройденный колесом до остановки. Качение колеса происходит без скольжения. Колесо считать однородным диском.

Теоретическая механика D4.10 Теоретическая механика 300₽
8608




ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
На рис. К3.11 показана схема механизма, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Ползун в данном положении механизма имеет скорость VB = 4 м/с и ускорение aB = 6 м/с2. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек А, Д, Е, угловые скорости указанных шатунов и кривошипа О1А, а также ускорение точки А.

Теоретическая механика K5.11 Теоретическая механика 2 300₽
10640




Определение реакций опор составной конструкции (система двух тел)
Найти реакции опор и давление в промежуточном шарнире составной конструкции. Схемы конструкций представлены на рис. 18-20 (размеры в метрах), нагрузка указана в табл. 4.

Вариант G P M, кН∙м q, кН∙м
кН
2 5 8 60 -
Теоретическая механика 300₽
8702




ПРИНЦИП ДАЛАМБЕРА
Невесомый стержень ВС длиной l, на конце которого распо-ложен точечный груз С массой m, вращается вокруг вертикальной оси ОА (оси Оу) с постоянной угловой скоростью ω. Расстояние от шарнира В до оси вращения равно b. Определить значение угловой скорости ω, если стержень ВС отклонился от вертикали на угол φ.

Теоретическая механика Д6.20 Теоретическая механика 2 300₽
10914




ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20.
Столб AB нагружен силой P, распределенной нагрузкой интенсивности q и парой сил с моментом M. Определить реакции заделки.
P = 30 кH; q = 2 кН/м; M = 50 кН м; 11 = 4 м; 12 = 3 м.

Теоретическая механика C3.20. Теоретическая механика 2 300₽
10994




СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.20, исходные данные приведены в табл. 1.

Номер варианта Р, кН G, кН M, кН∙м q, кН∙м l, м α, град
C1.20 15 10 50 - 1 30°
Теоретическая механика C1.20 Теоретическая механика 2 300₽
11074




Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.

Теоретическая механика C6.18 Теоретическая механика 2 300₽
8442




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. С2.1, исходные данные указаны в таблице 3.

Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
С2.1_1 5 4.4 3 2.8 2.3 1.5 30°
Теоретическая механика C2.1_1 Теоретическая механика 300₽
8538




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.4.

Теоретическая механика C4.4_1 Теоретическая механика 300₽
8624




Горизонтальная трубка вращается вокруг вертикальной оси OZ с угловой скоростью ω = 2 с-1. Шарик М движется вдоль трубки по закону МоМ = 0,5t2 м (рис. К 2.13). Определить абсолютную скорость шарика М в момент времени t1=2с.

Теоретическая механика K7.3 Теоретическая механика 2 300₽
10850




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.7, -исходные данные приведены в таблице 2.

Номер варианта Р1, кН P2, кН P3, кН M кН∙м a, м b, м α, град
С-2.7. 3 4 0 7 0.6 0.9 60°
Теоретическая механика C2.7. Теоретическая механика 2 300₽
10930




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. C4.8, исходные данные указаны в таблице 3.

Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
C4.8 4 4 3 3 2.5 1.5 30°
Теоретическая механика C4.8 Теоретическая механика 2 300₽
16905

Задано движение точки координатным способом и некоторый момент времени. Найти траекторию точки. Для заданного момента времени найти положение точки, скорость, ускорение, касательное и нормальное ускорение, радиус кривизны траектории. Все найденные величины изобразить на рисунке в подходящем масштабе так, чтобы все векторы были хорошо видны.

x = x(t), см y = y(t), см Время t1, с
-3t 0,5t2-4t 2
Теоретическая механика 300₽
11010




ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. C5.6 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4

Номер варианта Номера стержней Номера стержней Р1, кН Р2, кН
C5.6 2,7,4 1,5 110 70
Теоретическая механика C5.6 Теоретическая механика 2 300₽

Страницы