Задача № 3700

100₽
Условие задачи: 

Даны декартовы прямоугольные координаты вершин пирамиды $А_1 А_2 А_3 А_4$.
$$A_1(-1;-1;0), A_2(11;2;-4),A_3(11;-4;4), A_4(1;3;3),$$
Найти:
1) угол α между ребрами $А_1 А_2$ и $А_1 А_4$;
2) площадь S грани $А_1 А_2 А_3$;
3) объем V пирамиды,
4) уравнение плоскости π грани $А_1 А_2 А_3$;
5) угол β между ребром $А_1 А_4$ и гранью $А_1 А_2 А_3$;
6) уравнение высоты, опущенной из вершины $А_4$ на грань $А_1 А_2 А_3$.
Выполнить чертеж

Как получить решение?
Для того, чтобы получить решение этой задачи на свой е-мэйл, сделайте следующее:
  1. Нажмите кнопку Добавить в корзину.
  2. В Корзине покупок нажмите кнопку Оплата.
  3. На странице оплаты проверьте е-мэйл, на который будет выслано решение. Оплата осуществляется через платежный сервис ЮКасса, который в настоящее время позволяет делать платежи следующими способами:
    • Банковская карта: Mastercard, Maestro, Visa, МИР
    • ЮMoney: Кошелёк или привязанная карта
    • Qiwi: На сайте Qiwi
    • Наличные: В терминалах города
    Нажмите кнопку Продолжить.
  4. Еще раз проверьте детали покупки, а затем нажмите кнопку Оплата. Вы попадете на сайт платежного сервиса для дальнейшего оформления платежа.
  5. После оплаты Вам автоматически будет направлен е-мэйл с решением выбранной задачи.
В случае каких-либо проблем смело обращайтесь к нам, мы ответим на каждое письмо.