Кратные и криволинейные интегралы

Задача № 3480

75₽
Цена: 75₽

Вычислить двойной интеграл $$\iint\limits_G \ y dx\,dy, $$ где G - треугольник с вершинами $O(0,0), A(1,1), B(0,1)$.

Задача № 3479

75₽
Цена: 75₽

Вычислить двойной интеграл $$\iint\limits_G \,\frac{x}{x^2+y^2} dx\,dy, $$ где G - область ограничена линиями $y=x tg{x}, y=x, x=\frac{\pi}{8}, (x \ge \frac{\pi}{8}) $

Задача № 3478

50₽
Цена: 50₽

Вычислить двойной интеграл $$\iint\limits_G \,(12x^2y^2+16x^3y^3) dx\,dy,$$ где G - область ограничена линиями $x=1, y=x^2, y=-\sqrt{x} $.

Задача № 3477

75₽
Цена: 75₽

Вычислить двойной интеграл $$\iint\limits_G \,ye^{\frac{xy}{2}} dx\,dy, $$ где G - область ограничена линиями $y = \ln 2, y = \ln 3, x = 2, x = 4$.

Задача № 3476

75₽
Цена: 75₽

Вычислить двойной интеграл $$\iint\limits_G \ xy dx\,dy,$$ где G - треугольник с вершинами $A(0,0), B(1,1), C(2,-1)$.

Задача № 3475

30₽
Цена: 30₽

Изменить порядок интегрирования $$\int_{0}^{1}dy\int_{0}^{\sqrt{y}}fdx+\int_{1}^{2}dy\int_{0}^{\sqrt{2-y}}fdx$$

Задача № 3474

30₽
Цена: 30₽

Вычислить площадь плоской фигуры, ограниченная линиями $x = -2y$ и $x = 8 - y^2$ с помощью двойного интеграла.

Задача № 3470

50₽
Цена: 50₽

Вычислить объём тела, ограниченного поверхностями $x+y=4$, $x=\sqrt {2y}$, $z=\frac35 x$, $z=0$.

Задача № 3466

50₽
Цена: 50₽

Вычислить объём тела, ограниченного поверхностями $y^2=2x, x^2=4-z; z=0$

Задача № 3460

30₽
Цена: 30₽

Найти массу поверхности $G: z^2-4=x^2+y^2; x\geq 0; 2\leq z \leq \sqrt{5}$ с поверхностной плотностью $\gamma =3\sqrt{z^3}$

Задача № 3457

30₽
Цена: 30₽

Найти массу кривой $r=2{e}^{-\varphi},-3\pi/2\leq\varphi \leq \pi $ с линейной плотностью $y={\varphi}^{2}$

Задача № 3456

30₽
Цена: 30₽

Найти центр тяжести однородной пластинки, ограниченной линиями $x^2+y^2=a^2, y=0 ( y \leq 0)$

Задача № 3455

50₽
Цена: 50₽

Найти объем тела, ограниченного указанными поверхностями: Сделать чертеж данного тела и его проекции на плоскость XOY
$$y=16\sqrt{2x}; y=\sqrt{2x}, z=0; z+x=2$$

Задача № 3454

50₽
Цена: 50₽

Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. Сделать чертежи данного тела и его проекции на плоскости XOY.
$$z=0,y+z=2, x^2+y^2=4$$

Задача № 3453

75₽
Цена: 75₽

Методом Даламбера найти уравнение u=u(x;t) формы однородной бесконечной струны, определяемой волновым уравнением
$$\frac{\delta^2 u}{\delta t^2}=a^2 \frac{\delta^2 u}{\delta x^2 }$$
Если в начальный момент $t_0=0$ форма струны и скорость точки струны с абсциссой x определяются соответственно заданными функциями $u(t_0)=f(x)=\sin{x}; \frac{\delta u}{\delta t}(t_0)=F(x)=\cos{x}$

Задача № 3450

30₽
Цена: 30₽

Вычислить криволинейный интеграл $$\oint_{L}^{}y dx+\frac{x}{y} dy$$ вдоль дуги L кривой $y=e^{-x}$ от точки A(0;1) до точки B(-1;e). Сделать чертеж.

Задача № 3449

50₽
Цена: 50₽

Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. Сделать чертежи данного тела и его проекции на плоскости XOY.
$$z=0;x^2+y^2=z; x^2+y^2=4$$

Задача № 3448

75₽
Цена: 75₽

Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
$$x^4=a^2 (x^2-3y^2)$$

Страницы

Подписка на Кратные и криволинейные интегралы