Если найти нужную задачу не удаётся, Вы можете оформить Заказ.
Как использовать поиск
Номер | Условие задачи | Предмет | Задачник | Цена | ||
---|---|---|---|---|---|---|
3439 |
Пользуясь методом Жордана-Гаусса решить систему уравнений $$\left\{ |
Алгебра | 35₽ | |||
3440 |
Найти ранг матрицы $$A=\begin{pmatrix} |
Алгебра | 5₽ | |||
3441 |
Решить уравнение $XA = B$ |
Алгебра | 30₽ | |||
3442 |
Решить кубическое уравнение методом Кардано $0,7x^3-0,775x^2-7,86x-1121=0$. |
Алгебра | 30₽ | |||
3443 |
Найти координаты вектора x в базисе $(e'_1, e'_2, e'_3)$, если он задан в базисе $(e_1,e_2,e_3)$. |
Алгебра | 50₽ | |||
3444 |
Найти матрицу в базисе $(e'_1, e'_2, e'_3)$, где |
Алгебра | 50₽ | |||
3445 |
Найти собственные значения и собственные векторы матрицы. $$A=\begin{pmatrix} |
Алгебра | 30₽ | |||
3446 |
Исследовать кривую второго порядка $x^2+y^2-8xy-20x+20y+1=0$ и построить её график. |
Алгебра | 50₽ | |||
3447 |
Даны функция $z=f(x,y)$, точка $A(x_0,y_0)$ и вектор $\vec{a}$. Найти: |
Дифференциальное исчисление функций нескольких переменных | 75₽ | |||
3448 |
Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). |
Кратные и криволинейные интегралы | 75₽ | |||
3449 |
Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. Сделать чертежи данного тела и его проекции на плоскости XOY. |
Кратные и криволинейные интегралы | 50₽ | |||
3450 |
Вычислить криволинейный интеграл $$\oint_{L}^{}y dx+\frac{x}{y} dy$$ вдоль дуги L кривой $y=e^{-x}$ от точки A(0;1) до точки B(-1;e). Сделать чертеж. |
Кратные и криволинейные интегралы | 30₽ | |||
3451 |
Даны векторное поле $\vec{F}=(x-y+z)\vec{i}$ и плоскость $(p): -x+2y+z-4=0$, которая совместно с координатными плоскостями образует пирамиду $V$. Пусть $\sigma$ – основание пирамиды, принадлежащее плоскости $(p)$; $\lambda$ – контур, ограничивающий sigma; $n$ – нормаль к $\sigma$, направленная вне пирамиды $V$. Требуется вычислить. |
Дифференциальное исчисление функций нескольких переменных | 150₽ | |||
3452 |
Проверить, является ли векторное поле $\vec{F}=(5x+4yz)\vec{i}+(5y+4xz)\vec{j}+(5z+4xy)\vec{k}$ потенциальным и соленоидальным. В случае потенциальности поля $\vec{F}$ найти его потенциал. |
Векторный анализ | 30₽ | |||
3453 |
Методом Даламбера найти уравнение u=u(x;t) формы однородной бесконечной струны, определяемой волновым уравнением |
Кратные и криволинейные интегралы | 75₽ | |||
3454 |
Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. Сделать чертежи данного тела и его проекции на плоскости XOY. |
Кратные и криволинейные интегралы | 50₽ | |||
3455 |
Найти объем тела, ограниченного указанными поверхностями: Сделать чертеж данного тела и его проекции на плоскость XOY |
Кратные и криволинейные интегралы | 50₽ | |||
3456 |
Найти центр тяжести однородной пластинки, ограниченной линиями $x^2+y^2=a^2, y=0 ( y \leq 0)$ |
Кратные и криволинейные интегралы | 30₽ | |||
3457 |
Найти массу кривой $r=2{e}^{-\varphi},-3\pi/2\leq\varphi \leq \pi $ с линейной плотностью $y={\varphi}^{2}$ |
Кратные и криволинейные интегралы | 30₽ | |||
3458 |
Вычислить работу векторного поля $\vec F =(x+y^2+z^3)\vec{i}+(x^3+y+z)\vec{j}+(x^2+y^3+z)\vec{k}$ вдоль отрезка AB от точки A(2,4,7) до точки B(0,0,-1). |
Векторный анализ | 30₽ | |||
3459 |
Вычислить циркуляцию векторного поля $\vec{F}=(x^2+xy+y^2)\vec{i}+(x^2-xy+ y^2)\vec{j}$ по контуру Г, состоящему из частей кривых $y=x^2$ и $y=-x$. Направление обхода положительное |
Векторный анализ | 30₽ | |||
3460 |
Найти массу поверхности $G: z^2-4=x^2+y^2; x\geq 0; 2\leq z \leq \sqrt{5}$ с поверхностной плотностью $\gamma =3\sqrt{z^3}$ |
Кратные и криволинейные интегралы | 30₽ | |||
3461 |
Найти циркуляцию вектора поля $\vec{F} = \left\{ 1, xy, z \right\} $ через часть плоскости $P: x+y+z=-4$, ограниченную координатными плоскостями (нормаль к плоскости Р образует острый угол с осью Oz. |
Векторный анализ | 30₽ | |||
3462 |
Найти циркуляцию векторного поля $\vec{a}=(-2x^2+3y)\vec{i}+(x+y^2)\vec{j}-z\vec{k}$ вдоль контура Г: $x^2+y^2=1, y=0 (y\leq 0)$, лежащего в плоскости z = 0, в положительном направлении относительно орта k. |
Векторный анализ | 30₽ | |||
3463 |
Вычислить поток векторного поля $\vec{a}=(x+\sin{y})\vec{i}+(y+\cos{x})\vec{j}+(1+tg{x})\vec{k}$ через замкнутую поверхность $\Omega :x^2+y^2=2, 25, x=0, z=0, z=1 (x \ge 0)$ в направлении внешней нормали. |
Векторный анализ | 30₽ | |||
3464 |
Найти дивергенцию и ротор векторного поля $\vec{a}=[\vec{c},grad {u}]$, если $\vec{c}=\vec{j}-2\vec{k}, u=x^2-y^2+z^2$. |
Векторный анализ | 30₽ | |||
3465 |
Найти grad z в точке A и производную в точке A по направлению вектора $\vec{a}$, если $z=2x^2+3xy+y^2, A(2;1), \vec{a}=3\vec{i}-4\vec{j}$. |
Векторный анализ | 50₽ | |||
3466 |
Вычислить объём тела, ограниченного поверхностями $y^2=2x, x^2=4-z; z=0$ |
Кратные и криволинейные интегралы | 50₽ | |||
3467 |
Вычислить градиент скалярного поля $U=2-x-\frac{1}{2}y^2$ в точке M(1; 2). Построить градиент и линию уровня поля, проходящую через точку М. |
Векторный анализ | 75₽ | |||
3468 |
Вычислить поток векторного поля $\vec{a}=3xz\vec{i}-2x\vec{j}+y\vec{k}$ через поверхность $G:x+y+z=2; x=1; x=0; y=0; z=0$ |
Векторный анализ | 100₽ | |||
3469 |
Применяя формулу Стокса, вычислить циркуляцию векторного поля $\vec{F}=(2x+3y-3z)\vec{j}$ по замкнутому контуру С, образованному пересечением плоскости $2x-3y+2z-6=0$ с координатными плоскостями. |
Векторный анализ | 75₽ | |||
3470 |
Вычислить объём тела, ограниченного поверхностями $x+y=4$, $x=\sqrt {2y}$, $z=\frac35 x$, $z=0$. |
Кратные и криволинейные интегралы | 50₽ | |||
3471 |
Вычислить градиент скалярного поля $U(x,y)=\frac{1}{4}x^2y+1$ в точке M(2; 2) |
Векторный анализ | 75₽ | |||
3472 |
Вычислить поток векторного поля $\vec{a}=x^2\vec{i}+xy\vec{j}+3z\vec{k}$ через поверхность $G: x^2+y^2=z^2, z=4$. |
Векторный анализ | 50₽ | |||
3473 |
Применяя формулу Стокса, вычислить циркуляцию векторного поля $\vec{F}=(5x+2y+3z)\vec{k}$ по замкнутому контуру С, образованному пересечением плоскости $x+y+3z-3=0$ с координатными плоскостями. |
Векторный анализ | 75₽ | |||
3474 |
Вычислить площадь плоской фигуры, ограниченная линиями $x = -2y$ и $x = 8 - y^2$ с помощью двойного интеграла. |
Кратные и криволинейные интегралы | 30₽ | |||
3475 |
Изменить порядок интегрирования $$\int_{0}^{1}dy\int_{0}^{\sqrt{y}}fdx+\int_{1}^{2}dy\int_{0}^{\sqrt{2-y}}fdx$$ |
Кратные и криволинейные интегралы | 30₽ | |||
3476 |
Вычислить двойной интеграл $$\iint\limits_G \ xy dx\,dy,$$ где G - треугольник с вершинами $A(0,0), B(1,1), C(2,-1)$. |
Кратные и криволинейные интегралы | 75₽ | |||
3477 |
Вычислить двойной интеграл $$\iint\limits_G \,ye^{\frac{xy}{2}} dx\,dy, $$ где G - область ограничена линиями $y = \ln 2, y = \ln 3, x = 2, x = 4$. |
Кратные и криволинейные интегралы | 75₽ | |||
3478 |
Вычислить двойной интеграл $$\iint\limits_G \,(12x^2y^2+16x^3y^3) dx\,dy,$$ где G - область ограничена линиями $x=1, y=x^2, y=-\sqrt{x} $. |
Кратные и криволинейные интегралы | 50₽ | |||
3479 |
Вычислить двойной интеграл $$\iint\limits_G \,\frac{x}{x^2+y^2} dx\,dy, $$ где G - область ограничена линиями $y=x tg{x}, y=x, x=\frac{\pi}{8}, (x \ge \frac{\pi}{8}) $ |
Кратные и криволинейные интегралы | 75₽ | |||
3480 |
Вычислить двойной интеграл $$\iint\limits_G \ y dx\,dy, $$ где G - треугольник с вершинами $O(0,0), A(1,1), B(0,1)$. |
Кратные и криволинейные интегралы | 75₽ | |||
3481 |
Вычислить двойной интеграл $$\iint\limits_D \,y^2e^{\frac{xy}{2}} dx\,dy,$$ где G - область ограничена линиями $x=0,y=\sqrt{\frac{\pi}{2}},y=\frac{x}{2}$ |
Кратные и криволинейные интегралы | 75₽ | |||
3482 |
Вычислить двойной интеграл $$\iint\limits_D \,(18x^2y^2+32x^3y^3) dx\,dy,$$ где G - область ограничена линиями $x=1,y=\sqrt[3]{x},y=-x^2, x \ge 0 $ |
Кратные и криволинейные интегралы | 75₽ | |||
3483 |
Вычислить двойной интеграл $$\iint\limits_D \,(3x+y) dx\,dy,$$ где G - область ограничена линиями $x^2+y^2\ge 9,y\ge \frac{2}{3}x+3$ |
Кратные и криволинейные интегралы | 50₽ | |||
3484 |
Вычислить двойной интеграл $$\iint\limits_D f(x,y)\, dx\,dy$$ от функции f(x,y) по заданной области D:$$D=\left \{ \left(x,y,z \right)|-\sqrt{\pi} \le x \le 0,-x \le y \le \sqrt{\pi} \right \},f(x,y)={x}^{2}\sin(xy)$$ |
Кратные и криволинейные интегралы | 50₽ | |||
3485 |
Вычислить объем тела G с помощью кратного интеграла, используя подходящую замену переменных: |
Кратные и криволинейные интегралы | 50₽ | |||
3486 |
Вычислить криволинейный интеграл I рода по плоской кривой Г: $$\int_{G}^{}(x+y)ds,$$ |
Кратные и криволинейные интегралы | 75₽ | |||
3487 |
Вычислить криволинейный интеграл по меньшей дуге единичной окружности, заключенной между точками A и B и ориентированной в направлении от точки A к точке B: |
Кратные и криволинейные интегралы | 75₽ | |||
3488 |
Вычислить криволинейный интеграл по окружности,ориентированной по часовой стрелке |
Кратные и криволинейные интегралы | 50₽ |