Онлайн-магазин готовых решений

Вы можете мгновенно получить на свой е-мэйл решение любой из этих задач, оплатив её стоимость через онлайн-сервис на нашем сайте. Подробные инструкции по оплате можно увидеть, кликнув на ссылку номера задачи.
Если найти нужную задачу не удаётся, Вы можете оформить Заказ.

Как использовать поиск
Всего задач, соответствующих запросу: 7324
Номер Условие задачи Предмет Задачник Цена
3439

Пользуясь методом Жордана-Гаусса решить систему уравнений $$\left\{
\begin{array}{lcl}
2x_1+0x_2+x_3+3x_4&=&4\\
3x_1+2x_2+0x_3+x_4&=&1\\
5x_1+2x_2+x_3+4x_4&=&5\\
7x_1+2x_2+2x_3+7x_4&=&9\\
\end{array} \right.$$

Алгебра 35₽
3440

Найти ранг матрицы $$A=\begin{pmatrix}
1 & 2 & 3 & 2 & 1 \\
0 & 1 & 1 & 2 & 1 \\
1 & 3 & 4 & 4 & 2 \\
1 & 4 & 5 & 4 & 2 \\
\end{pmatrix}$$

Алгебра 5₽
3441

Решить уравнение $XA = B$
$$A=\begin{pmatrix}4 & 5 \\2 & 3 \\\end{pmatrix}; B=\begin{pmatrix}2 & 3 \\1 & 4 \\\end{pmatrix}.$$

Алгебра 30₽
3442

Решить кубическое уравнение методом Кардано $0,7x^3-0,775x^2-7,86x-1121=0$.

Алгебра 30₽
3443

Найти координаты вектора x в базисе $(e'_1, e'_2, e'_3)$, если он задан в базисе $(e_1,e_2,e_3)$.
$$\left\{\begin{matrix}
e'_1 & = & e_1+e_2+2/3 e_3, \\
e'_2 & = & -2e_1-e_2, \\
e'_3 & = & -e_1+e_2+e_3 \\
\end{matrix}\right.$$
${x=12,3,-1}$.

Алгебра 50₽
3444

Найти матрицу в базисе $(e'_1, e'_2, e'_3)$, где
$$\left\{\begin{matrix}
e'_1 & = & e_1-e_2+e_3, \\
e'_2 & = & -e_1+e_2-2e_3, \\
e'_3 & = & -e_1+2e_2+e_3 \\
\end{matrix}\right., $$
если она задана в базисе $(e_1, e_2, e_3)$.
$$A=\begin{pmatrix}
1 & 1 & 3 \\
1 & 0 & 1 \\
2 & 0 & 1
\end{pmatrix}$$

Алгебра 50₽
3445

Найти собственные значения и собственные векторы матрицы. $$A=\begin{pmatrix}
7 & -6 & 6 \\
4 & -1 & 4 \\
4 & -2 & 5
\end{pmatrix}$$

Алгебра 30₽
3446

Исследовать кривую второго порядка $x^2+y^2-8xy-20x+20y+1=0$ и построить её график.

Алгебра 50₽
3447

Даны функция $z=f(x,y)$, точка $A(x_0,y_0)$ и вектор $\vec{a}$. Найти:
1) grad z в точке A;
2) производную в точке A по направлению вектора a.
$$z=\arcsin \frac{x^2}{y}; A(1,2), a=5\vec{i} - 12\vec{j}$$.

Дифф. исчисление функций нескольких переменных 75₽
3448

Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
$$x^4=a^2 (x^2-3y^2)$$

Кратные и криволинейные интегралы 75₽
3449

Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. Сделать чертежи данного тела и его проекции на плоскости XOY.
$$z=0;x^2+y^2=z; x^2+y^2=4$$

Кратные и криволинейные интегралы 50₽
3450

Вычислить криволинейный интеграл $$\oint_{L}^{}y dx+\frac{x}{y} dy$$ вдоль дуги L кривой $y=e^{-x}$ от точки A(0;1) до точки B(-1;e). Сделать чертеж.

Кратные и криволинейные интегралы 30₽
3451

Даны векторное поле $\vec{F}=(x-y+z)\vec{i}$ и плоскость $(p): -x+2y+z-4=0$, которая совместно с координатными плоскостями образует пирамиду $V$. Пусть $\sigma$ – основание пирамиды, принадлежащее плоскости $(p)$; $\lambda$ – контур, ограничивающий sigma; $n$ – нормаль к $\sigma$, направленная вне пирамиды $V$. Требуется вычислить.
1) Поток векторного поля $F$ через поверхность $\sigma$ в направлении нормали $n$.
2) Циркуляцию векторного поля $F$ по замкнутому контуру $\sigma$ непосредственно и применив теорему Стокса к контуру $\lambda$ и ограниченной им поверхности $\lambda$ с нормалью $n$.
3) Поток векторного поля $F$ через полную поверхность пирамиды $V$ в направлении внешней нормали к её поверхности, непосредственно и применив теорему Остроградского. Сделать чертеж.

Дифф. исчисление функций нескольких переменных 150₽
3452

Проверить, является ли векторное поле $\vec{F}=(5x+4yz)\vec{i}+(5y+4xz)\vec{j}+(5z+4xy)\vec{k}$ потенциальным и соленоидальным. В случае потенциальности поля $\vec{F}$ найти его потенциал.

Векторный анализ 30₽
3453

Методом Даламбера найти уравнение u=u(x;t) формы однородной бесконечной струны, определяемой волновым уравнением
$$\frac{\delta^2 u}{\delta t^2}=a^2 \frac{\delta^2 u}{\delta x^2 }$$
Если в начальный момент $t_0=0$ форма струны и скорость точки струны с абсциссой x определяются соответственно заданными функциями $u(t_0)=f(x)=\sin{x}; \frac{\delta u}{\delta t}(t_0)=F(x)=\cos{x}$

Кратные и криволинейные интегралы 75₽
3454

Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. Сделать чертежи данного тела и его проекции на плоскости XOY.
$$z=0,y+z=2, x^2+y^2=4$$

Кратные и криволинейные интегралы 50₽
3455

Найти объем тела, ограниченного указанными поверхностями: Сделать чертеж данного тела и его проекции на плоскость XOY
$$y=16\sqrt{2x}; y=\sqrt{2x}, z=0; z+x=2$$

Кратные и криволинейные интегралы 50₽
3456

Найти центр тяжести однородной пластинки, ограниченной линиями $x^2+y^2=a^2, y=0 ( y \leq 0)$

Кратные и криволинейные интегралы 30₽
3457

Найти массу кривой $r=2{e}^{-\varphi},-3\pi/2\leq\varphi \leq \pi $ с линейной плотностью $y={\varphi}^{2}$

Кратные и криволинейные интегралы 30₽
3458

Вычислить работу векторного поля $\vec F =(x+y^2+z^3)\vec{i}+(x^3+y+z)\vec{j}+(x^2+y^3+z)\vec{k}$ вдоль отрезка AB от точки A(2,4,7) до точки B(0,0,-1).

Векторный анализ 30₽
3459

Вычислить циркуляцию векторного поля $\vec{F}=(x^2+xy+y^2)\vec{i}+(x^2-xy+ y^2)\vec{j}$ по контуру Г, состоящему из частей кривых $y=x^2$ и $y=-x$. Направление обхода положительное

Векторный анализ 30₽
3460

Найти массу поверхности $G: z^2-4=x^2+y^2; x\geq 0; 2\leq z \leq \sqrt{5}$ с поверхностной плотностью $\gamma =3\sqrt{z^3}$

Кратные и криволинейные интегралы 30₽
3461

Найти циркуляцию вектора поля $\vec{F} = \left\{ 1, xy, z \right\} $ через часть плоскости $P: x+y+z=-4$, ограниченную координатными плоскостями (нормаль к плоскости Р образует острый угол с осью Oz.

Векторный анализ 30₽
3462

Найти циркуляцию векторного поля $\vec{a}=(-2x^2+3y)\vec{i}+(x+y^2)\vec{j}-z\vec{k}$ вдоль контура Г: $x^2+y^2=1, y=0 (y\leq 0)$, лежащего в плоскости z = 0, в положительном направлении относительно орта k.

Векторный анализ 30₽
3463

Вычислить поток векторного поля $\vec{a}=(x+\sin{y})\vec{i}+(y+\cos{x})\vec{j}+(1+tg{x})\vec{k}$ через замкнутую поверхность $\Omega :x^2+y^2=2, 25, x=0, z=0, z=1 (x \ge 0)$ в направлении внешней нормали.

Векторный анализ 30₽
3464

Найти дивергенцию и ротор векторного поля $\vec{a}=[\vec{c},grad {u}]$, если $\vec{c}=\vec{j}-2\vec{k}, u=x^2-y^2+z^2$.

Векторный анализ 30₽
3465

Найти grad z в точке A и производную в точке A по направлению вектора $\vec{a}$, если $z=2x^2+3xy+y^2, A(2;1), \vec{a}=3\vec{i}-4\vec{j}$.

Векторный анализ 50₽
3466

Вычислить объём тела, ограниченного поверхностями $y^2=2x, x^2=4-z; z=0$

Кратные и криволинейные интегралы 50₽
3467

Вычислить градиент скалярного поля $U=2-x-\frac{1}{2}y^2$ в точке M(1; 2). Построить градиент и линию уровня поля, проходящую через точку М.

Векторный анализ 75₽
3468

Вычислить поток векторного поля $\vec{a}=3xz\vec{i}-2x\vec{j}+y\vec{k}$ через поверхность $G:x+y+z=2; x=1; x=0; y=0; z=0$

Векторный анализ 100₽
3469

Применяя формулу Стокса, вычислить циркуляцию векторного поля $\vec{F}=(2x+3y-3z)\vec{j}$ по замкнутому контуру С, образованному пересечением плоскости $2x-3y+2z-6=0$ с координатными плоскостями.

Векторный анализ 75₽
3470

Вычислить объём тела, ограниченного поверхностями $x+y=4$, $x=\sqrt {2y}$, $z=\frac35 x$, $z=0$.

Кратные и криволинейные интегралы 50₽
3471

Вычислить градиент скалярного поля $U(x,y)=\frac{1}{4}x^2y+1$ в точке M(2; 2)

Векторный анализ 75₽
3472

Вычислить поток векторного поля $\vec{a}=x^2\vec{i}+xy\vec{j}+3z\vec{k}$ через поверхность $G: x^2+y^2=z^2, z=4$.

Векторный анализ 50₽
3473

Применяя формулу Стокса, вычислить циркуляцию векторного поля $\vec{F}=(5x+2y+3z)\vec{k}$ по замкнутому контуру С, образованному пересечением плоскости $x+y+3z-3=0$ с координатными плоскостями.

Векторный анализ 75₽
3474

Вычислить площадь плоской фигуры, ограниченная линиями $x = -2y$ и $x = 8 - y^2$ с помощью двойного интеграла.

Кратные и криволинейные интегралы 30₽
3475

Изменить порядок интегрирования $$\int_{0}^{1}dy\int_{0}^{\sqrt{y}}fdx+\int_{1}^{2}dy\int_{0}^{\sqrt{2-y}}fdx$$

Кратные и криволинейные интегралы 30₽
3476

Вычислить двойной интеграл $$\iint\limits_G \ xy dx\,dy,$$ где G - треугольник с вершинами $A(0,0), B(1,1), C(2,-1)$.

Кратные и криволинейные интегралы 75₽
3477

Вычислить двойной интеграл $$\iint\limits_G \,ye^{\frac{xy}{2}} dx\,dy, $$ где G - область ограничена линиями $y = \ln 2, y = \ln 3, x = 2, x = 4$.

Кратные и криволинейные интегралы 75₽
3478

Вычислить двойной интеграл $$\iint\limits_G \,(12x^2y^2+16x^3y^3) dx\,dy,$$ где G - область ограничена линиями $x=1, y=x^2, y=-\sqrt{x} $.

Кратные и криволинейные интегралы 50₽
3479

Вычислить двойной интеграл $$\iint\limits_G \,\frac{x}{x^2+y^2} dx\,dy, $$ где G - область ограничена линиями $y=x tg{x}, y=x, x=\frac{\pi}{8}, (x \ge \frac{\pi}{8}) $

Кратные и криволинейные интегралы 75₽
3480

Вычислить двойной интеграл $$\iint\limits_G \ y dx\,dy, $$ где G - треугольник с вершинами $O(0,0), A(1,1), B(0,1)$.

Кратные и криволинейные интегралы 75₽
3481

Вычислить двойной интеграл $$\iint\limits_D \,y^2e^{\frac{xy}{2}} dx\,dy,$$ где G - область ограничена линиями $x=0,y=\sqrt{\frac{\pi}{2}},y=\frac{x}{2}$

Кратные и криволинейные интегралы 75₽
3482

Вычислить двойной интеграл $$\iint\limits_D \,(18x^2y^2+32x^3y^3) dx\,dy,$$ где G - область ограничена линиями $x=1,y=\sqrt[3]{x},y=-x^2, x \ge 0 $

Кратные и криволинейные интегралы 75₽
3483

Вычислить двойной интеграл $$\iint\limits_D \,(3x+y) dx\,dy,$$ где G - область ограничена линиями $x^2+y^2\ge 9,y\ge \frac{2}{3}x+3$

Кратные и криволинейные интегралы 50₽
3484

Вычислить двойной интеграл $$\iint\limits_D f(x,y)\, dx\,dy$$ от функции f(x,y) по заданной области D:$$D=\left \{ \left(x,y,z \right)|-\sqrt{\pi} \le x \le 0,-x \le y \le \sqrt{\pi} \right \},f(x,y)={x}^{2}\sin(xy)$$

Кратные и криволинейные интегралы 50₽
3485

Вычислить объем тела G с помощью кратного интеграла, используя подходящую замену переменных:
$$G=\left \{\left(x,y,z\right)|{x}^{2}+{y}^{2}+{z}^{2}\le 4, 1 \le z \le 2 \right \}$$

Кратные и криволинейные интегралы 50₽
3486

Вычислить криволинейный интеграл I рода по плоской кривой Г: $$\int_{G}^{}(x+y)ds,$$
Г - граница треугольника с вершинами (0,0), (0,2), (2,0).

Кратные и криволинейные интегралы 75₽
3487

Вычислить криволинейный интеграл по меньшей дуге единичной окружности, заключенной между точками A и B и ориентированной в направлении от точки A к точке B:
$$\int_{AB}^{}xdy, A(-1;0), B(-\frac{1}{2};\frac{\sqrt{3}}{2})$$

Кратные и криволинейные интегралы 75₽
3488

Вычислить криволинейный интеграл по окружности,ориентированной по часовой стрелке
$$C=\left \{ \left(x,y \right)|{x}^{2}+{y}^{2}=1 \right \}:\iint\limits_C \, \cos y dx+ \sin x dy$$

Кратные и криволинейные интегралы 50₽

Страницы