Онлайн-магазин готовых решений

Вы можете мгновенно получить на свой е-мэйл решение любой из этих задач, оплатив её стоимость через онлайн-сервис на нашем сайте. Подробные инструкции по оплате можно увидеть, кликнув на ссылку номера задачи.
Если найти нужную задачу не удаётся, Вы можете оформить Заказ.

Как использовать поиск
Всего задач, соответствующих запросу: 7186
Номер Предмет Условие задачи Задачник Ценасортировать по убыванию
11246 Теоретическая механика

КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.

№ варианта S = S(t), cм R, см Время t1, с
К2.4 3cos(πt/3) - 2 5sin(πt/3) 4
K2.4 Теоретическая механика 2 300р.
14566 Теоретическая механика




ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3

№ варианта Уравнение движения груза 1 S = S(t), см R2 r2 R3 r3 t1
К3.4 160t2 50 30 70 40 2
K3.4 Теоретическая механика 2 300р.
8568 Теоретическая механика

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = x(t), у = y(t). найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.

Номер варианта х = х(t), cм у = у(t), см Время t1, с
K1.13 4t2 + 1 4t 1
K1.13_1 Теоретическая механика 300р.
10876 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20. Кронштейн ABC, весом которого пренебрегаем, испытывает действие груза весом G, пары сип с моментом M и силы P. Определить реакции заделки.
G = 4 кН; P = 9 кН; M = 12 кНм; a = 1,5 м; α = 45°.

C3.1. Теоретическая механика 2 300р.
5102 Теоретическая механика

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.10.

C4.10 Теоретическая механика 300р.
14098 Теоретическая механика




ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис.
AB = 45 см; AC = 15 см; CD = 60 см; vA = 60 см/c

K1.5 МИИТ. Теоретическая механика. 2012 год 300р.
8122 Электротехника




ЗАДАНИЕ № 2 «РАСЧЕТ ТРЁХФАЗНОЙ ЦЕПИ»
3.1. Внутри здания сети внутреннего электроснабжения выполнены по схеме "звезда" с нейтральным проводом. Отдельные помещения подключены к разным фазам трехфазного источника электроэнергии с линейным напряжением Uл = 380 В и частотой тока f = 50 Гц. На основании данных табл. 3.1 - 3.2 определить для своего варианта (последняя цифра трехзначного варианта из предыдущего задания – номер строки в табл. 3.2, предпоследняя цифра – номер строки в табл. 3.1) нагрузку каждой фазы, причем электропотребители в фазе включаются параллельно. Считая лампу накачивания (ЛН) активной нагрузкой, калорифер (К), электродвигатель (ЭД) и трансформатор (ТР) активно-индуктивной нагрузкой, начертить электрическую схему замещения рассчитываемой трехфазной цепи для своего варианта.
3.2. Выполнить анализ электрического состояния полученной в п. 3.1 схемы при наличии нейтрального провода:
1) определить активное, реактивное и полное сопротивления каждого электропотребителя;
2) рассчитать токи, протекающие через каждый электропотребитель (токи в параллельных ветвях каждой фазы);
3) определить для каждой фазы полное сопротивление, активную, реактивную и полную мощность, коэффициент мощности;
4) рассчитать линейные токи и ток в нейтральном проводе;
5) определить для всей трехфазной нагрузки активную PН, реактивную QH и полную SH мощности, коэффициент мощности cos φH и составить баланс мощностей;
6) построить в масштабе совмещенную векторную диаграмму напряжений и токов.
Таблица 3.1. Вид нагрузки в фазах

Номер строки Электроприемники в фазах
Фаза A Фаза B Фаза C
5 ЛН, ЭД ЛН ЛН, ТР, К

Таблица 3.2. Параметры нагрузки

Номер строки ЛН К ТР Эд
PЛН PК cos φК SТР cos φТР PЭД КПД cos φЭД
9 100 400 1 1600 0,5 400 0,74 0,76

3.3. Примечания:
1. Для всех токов и напряжений определить действующее значение и начальную фазу.
2. На схеме замещения изображать активную нагрузку в виде резистора, активно-индуктивную нагрузку в виде последовательного соединения резистора и идеальной индуктивной катушки.
3. Баланс мощностей должен сойтись с погрешностью менее 1%.

300р.
14582 Теоретическая механика




ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3

№ варианта Уравнение движения груза 1 S = S(t), см R2 r2 R3 r3 t1
К3.12 160t2 50 30 70 40 2
K3.12 Теоретическая механика 2 300р.
8588 Теоретическая механика

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Колесо, имеющее неподвижную ось вращения, получило начальную угловую скорость 4π c-1. Сделав 20 оборотов, оно вследствие трения в подшипниках, остановилось. Определить угловое ускорение колеса, считая его постоянным, а также время вращения колеса до остановки.

K4.12 Теоретическая механика 2 300р.
13846 Теоретическая механика




Доска ОА массой m длиной l может вращаться без трения вокруг горизонтальной оси О. В нижний конец A неподвижно висящей доски, попадает пуля массой m1, летящая горизонтально со скоростью v и застревает в ней. Определить угловую скорость доски после попадания пули. При вычислении момента инерции доски считать ее однородным стержнем

Д5.4 Теоретическая механика 2 300р.
5042 Теоретическая механика




В кулисном механизме при качании кулисы ОА вокруг оси о ползун В, перемещаясь вдоль кулисы, приводит в движение стержень ВС . Определить скорость движения ползуна В относительно кулисы в функции её угловой скорости ω и угла поворота φ.

K7.8 Теоретическая механика 2 300р.
10892 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20. К изогнутой балке ABC, удерживаемой в равновесии тросом, перекинутым через блок K, приложены сила P, распределенная нагрузка интенсивности q и пара сил моментом M. Определить натяжение троса и реакцию шарнира A, полагая AD = ED = a; DE = BC = 4а; P = 8 кН; q = 3 кН/м; M = 4кН∙м; a = 2 м; α = 45°.

C3.9. Теоретическая механика 2 300р.
11278 Теоретическая механика

КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.

№ варианта S = S(t), cм R, см Время t1, с
К2.19 2sin(πt/4) - 4 3cos(π/4) 1
K2.19 Теоретическая механика 2 300р.
14598 Теоретическая механика




ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3

№ варианта Уравнение движения груза 1 S = S(t), см R2 r2 R3 r3 t1
К3.20 160t2 50 30 70 40 2
K3.20 Теоретическая механика 2 300р.
8604 Теоретическая механика




ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
На рис. К3.4 показана схема механизма, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Кривошип O1А вращается вокруг оси O1 с постоянной угловой скоростью ω1 = ωO1A = 4 с-1. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек A, B, Д, Е, угловые скорости указанных шатунов и кривошипа О2В, а также ускорение точки В.

K5.4 Теоретическая механика 2 300р.
8698 Теоретическая механика




ПРИНЦИП ДАЛАМБЕРА
Тонкий однородный стержень ОА массой m и длиной l, закрепленный шарнирно в своей середине О на оси ОО1 (оси Оу), вращается во-круг этой оси с постоянной угловой скоростью ω. При этом он удерживается в положении, образующем угол α с осью ОО1 при помощи пружины АД. Определить усилие в пружине

Д6.16 Теоретическая механика 2 300р.
5059 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции. Схемы конструкций указаны на рисунке С1.16, исходные данные приведены в таблице.

Номер варианта P, кН G, кН M, кНм q, кН/м l, м α, град.
C1.16 6 9 3 5 2 60°
C1.16 МИИТ. Теоретическая механика. 2012 год 300р.
11138 Теоретическая механика




ТРЕНИЕ СКОЛЬЖЕНИЯ И ТРЕНИЕ КАЧЕНИЯ
Расчетные схемы даны на рис. С8.10. Дверь в купе железнодорожного вагона может скользить в горизонтальных желобах, расположенных сверху и снизу. Коэффициент трения между дверью и нижним желобом равен f. Центр тяжести двери лежит на оси симметрии. Найти наибольшую высоту h ручки двери, при которой дверь не будет перекашиваться в желобах, если ее вес равен G, а ширина равна b.

C8.10 Теоретическая механика 2 300р.
8246 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.14, исходные данные приведены в табл. 1.

Номер варианта P, кН G, кН M, кНм q, кН/м l, м α, град
C1.14 15 - 3 4 1 45°
C1.14 МИИТ. Теоретическая механика. 2012 год 300р.
11218 Теоретическая механика

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.10 3sin(πt/2) 4cos(πt/2) 0,5
K1.10 Теоретическая механика 2 300р.
8444 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.5, -исходные данные приведены в таблице 2.

Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
С-2.5 6 5 6 0,8 1,8 - 60°
C2.5 МИИТ. Теоретическая механика. 2012 год 300р.
8540 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.5.

C4.5_1 Теоретическая механика 300р.
10994 Теоретическая механика




СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.20, исходные данные приведены в табл. 1.

Номер варианта Р, кН G, кН M, кН∙м q, кН∙м l, м α, град
C1.20 15 10 50 - 1 30°
C1.20 Теоретическая механика 2 300р.
6397 Теоретическая механика




ПРОСТРАНСТВЕННАЯ СИСТЕМА СИЛ
Изогнутая под прямыми углами пространственная рама концом А заделана в неподвижную опору и нагружена равномерно распределенной нагрузкой интенсивностью q или линейное I распределенной нагрузкой с максимальной интенсивностью qmax, парой сил с моментом M и силой P, расположенной в плоскости перпендикулярной участку рамы длиной l4 и образующей угол α с прямой изображенной на рисунке.
Определить опорные реакции рамы.
Варианты расчетных схем изображены па рисунке.
Номер на рисунке соответствует варианту задания. Числовые значения параметров приведены в таблице.

Номер варианта P, Н M, Н∙м q, Н/м l1, м l2, м l3, м l4, м α, °
5 200 500 300 1,8 1,2 1,4 1 150
300р.
11074 Теоретическая механика




Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.

C6.18 Теоретическая механика 2 300р.
3282 Теоретическая механика

С3ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы (рис. С3.1 – С3.20) соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4

Номер варианта Номера стержней Номера стержней Р1, кН Р2, кН
С3.7 1, 9, 3 4,5 150 120

В точке А заменить подвижный шарнир на НЕ ПОДВИЖНЫЙ.

C3.7_1 Теоретическая механика 300р.
11154 Теоретическая механика




Расчетные схемы даны на рис. С8.18. Найти наибольшую величину силы Tmax, при приложении которой к катушке весом P при помощи нити начнется ее качение по горизонтальной плоскости. Радиусы катушки равны r и R, а ее коэффициент трения качения равен δ.

C8.18 Теоретическая механика 2 300р.
11234 Теоретическая механика

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.18 5t - 6t2 2t 1
K1.18 Теоретическая механика 2 300р.
16666 Электротехника




САМОСТОЯТЕЛЬНАЯ РАБОТА 3
Расчёт неразветвлённой электрической цепи постоянного тока
Необходимо:
1. Определить показания приборов, указанных на схеме
2. Определить закон изменения тока Б цепи.
3. Определить закон изменения напряжения между точками, к которым подключен вольтметр.
4. Построить векторную диаграмм токов и напряжений
5. Определять активную и реактивную мощности источника, активную и реактивную мощности приемников. Составить и оценить баланс активной н реактивной мощностей.
6. Определить характер (индуктивность, емкость) и параметры элемента, который должен быть включен в цепь для того, чтобы в ней имел место резонанс напряжений.
Примечание. Ваттметр измеряет активную мощность цепи.
Напряжение на зажимах цепи, вариант которой соответствует последней цифре учебного шифра студента и изображенной на рис, изменяется по закону $u=U_m\cdot \sin{⁡\omega t}$. Амплитудное значение напряжения Um, значения активных сопротивлений r1 и r2, индуктивностей катушек L1 и L2, емкостей конденсаторов C1 и C2 приведены в таблице. Частота питающего напряжения f = 50 Гц.

Параметр цепи Предпоследняя цифра учебного шифра студента
9
Um, В 320
Ψ, град 35
r1, Ом 9
r2, Ом 5
L1, Гн 0,03
L2, Гн 0,04
C1, мкФ 500
C2, мкФ 200
300р.
8472 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. С 1.11, исходные данные приведены в табл. 1.

Номер варианта P, кН G, кН M, кНм q, кН/м l, м α, град
C1.11 10 8 6 2 2 30°
C1.1 МИИТ. Теоретическая механика. 2012 год 300р.
10930 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. C4.8, исходные данные указаны в таблице 3.

Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
C4.8 4 4 3 3 2.5 1.5 30°
C4.8 Теоретическая механика 2 300р.
8556 Теоретическая механика

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = x(t), у = y(t). найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.

Номер варианта х = х(t), cм у = у(t), см Время t1, с
K1.1 5t 2 - 5t2 1
K1.1_1 Теоретическая механика 300р.
11010 Теоретическая механика




ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. C5.6 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4

Номер варианта Номера стержней Номера стержней Р1, кН Р2, кН
C5.6 2,7,4 1,5 110 70
C5.6 Теоретическая механика 2 300р.
9022 Теоретическая механика




СТАТИКА
Жесткая рама (рис C1.4, табл. C1) закреплена в точке A шарнирно, а в точке B прикреплена или к невесомому стержню BB1, или к шарнирной опоре на катках, стержень прикреплен к раме и к неподвижной опоре шарнирами
На раму действуют пара сил с моментом M = 100 Н∙м и две силы, значения которых, направления и точки приложения указаны в таблице (например, в условиях № 1 на раму действуют сила F1 = 10 Н под углом 30° горизонтальной оси, приложенная в точке K, и сила F4 = 40 Н под углом 60° к горизонтальной оси, приложенная в точке H).
Определить реакции связей в точках A и B, вызываемые заданными нагрузками. При окончательных подсчетах принять l = 0,5 м.

C1.4 Теоретическая механика 300р.
11090 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунке.

C7.6 Теоретическая механика 2 300р.
11170 Теоретическая механика




Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.6. Размеры ферм даны в метрах, остальных тел - в сантиметрах.

C9.6 Теоретическая механика 2 300р.
14320 Теоретическая механика




ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОГО МОМЕНТА. ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЁРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ОСИ
Круглая горизонтальная платформа вращается без трения вокруг неподвижной вертикальной оси О, перпендикулярной к ее плоскости, под действием пары сил с моментом М (пара сил лежит в плоскости платформы). Платформа представляет однородный диск радиусом R и массой m. В начальный момент платформа неподвижна. Определить закон вращательного движения платформы.

Д5.2 Теоретическая механика 2 300р.
8390 Теоретическая механика




ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
На рис. К3.2 показана схема механизма, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Кривошип O1А вращается вокруг оси O1 с постоянной угловой скоростью ω1 = ωO1A = 4 с-1. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек A, B, Д, Е, угловые скорости указанных шатунов и кривошипа О2В, а также ускорение точки В.

K5.2 Теоретическая механика 2 300р.
14804 Теоретическая механика




Груз D массой m, получив в точке A начальную скорость v0, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис.3.1, табл. 3.2).
На участке АВ на груз кроме силы тяжести действуют постоянная сила Q (ее направление показано на рисунках).
В точке B груз, не изменяя своей скорости, переходит на участок BC трубы, где на него кроме силы тяжести действует переменная сила F, проекция которой Fx на ось х задана в таблице.
Считая груз материальной точкой и зная время t1 движения груза от точки A до точки B, найти скорость груза на участке BC через t2 = 2 сек. после выхода из точки B. Трением груза о трубу пренебречь.

Вариант m, кг v0, м/c Q, Н t1, с Fx, Н
4 6 15 12 1 t3
Д1-4 Методичка по термеху. Нижний Новгород. 2019 год 300р.
8490 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. С2.11, исходные данные указаны в таблице 3.

Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
С2.11 8 4 2.4 1.8 2.5 0.8 30°
C2.11_1 Теоретическая механика 300р.
10946 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. C4.16, исходные данные указаны в таблице 3.

Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
C4.16 3 7.2 2 1 4.5 2.2 30°
C4.16 Теоретическая механика 2 300р.
9754 Электротехника




ЗАДАНИЕ № 3 «РАСЧЕТ ЧЕТЫРЁХПОЛЮСНИКА»
На рис. 5.1 представлена Г-образная эквивалентная схема четырёхполюсника (ЧП), где Z1 – продольное сопротивление, Z2 – поперечное сопротивление.
Выполнить следующее:
1) начертить исходную схему ЧП;
2) свести полученную схему ЧП к Г-образной эквивалентной схеме ЧП, заменив трёхэлементные схемы замещения продольного и поперечного сопротивлений двухэлементными схемами: Z1 = R1 + jX1, Z2 = R2 + jX2. Дальнейший расчёт вести для эквивалентной схемы;
3) определить коэффициенты A – формы записи уравнений ЧП;
4) определить сопротивления холостого хода и короткого замыкания со стороны первичных (11’) и вторичных выводов (22’):
а) через A – параметры;
б) непосредственно через продольное и поперечное сопротивления для режимов холостого хода и короткого замыкания на соответствующих выводах;
5) определить характеристические сопротивления для выводов 11’ и 22’ и постоянную передачи ЧП;
6) определить комплексный коэффициент передачи по напряжению и передаточную функцию ЧП;
Таблица 5.1. Параметры элементов продольного и поперечного сопротивлений ЧП

Номер строки R, Ом L, мГ C, мкФ f0, кГц
2 30 5 5 30
235.3 300р.
11026 Теоретическая механика




ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. C5.14 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4

Номер варианта Номера стержней Номера стержней Р1, кН Р2, кН
C5.14 2, 9, 4 1, 6 80 100
C5.14 Теоретическая механика 2 300р.
11106 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунке.

C7.14 Теоретическая механика 2 300р.
11186 Теоретическая механика




ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ЦЕНТРА ТЯЖЕСТИ ОДНОРОДНОГО ТЕЛА
Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.14. Размеры ферм даны в метрах, остальных тел - в сантиметрах.

C9.14 Теоретическая механика 2 300р.
8408 Теоретическая механика




ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. С3.14 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4

Номер варианта Номера стержней Номера стержней Р1, кН Р2, кН
С3.14 2,9,4 1,6 80 100
C3.14_1 Теоретическая механика 300р.
5105 Теоретическая механика

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
На рис. К3.10 показаны схемы механизмов, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Кривошип O1А вращается вокруг оси O1 с постоянной угловой скоростью ω1 = ωOA = 4 с-1. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек А, В, Д, Е, угловые скорости указанных шатунов и кривошипа О2В, а также ускорение точки В.

K5.10 Теоретическая механика 2 300р.
8506 Теоретическая механика




ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. С3.1 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4

Номер варианта Номера стержней Номера стержней Р1, кН Р2, кН
С3.1 2, 9, 4 1, 6 90 40
C3.1 Теоретическая механика 300р.
10962 Теоретическая механика




СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.4, исходные данные приведены в табл. 1.

Номер варианта Р, кН G, кН M, кН∙м q, кН∙м l, м α, град
C1.4 15 - 3 4 1 45°
C1.4 Теоретическая механика 2 300р.
8974 Теоретическая механика




ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис.
AB = R + r = 35 см = 0,35 м; r = 15 см =0,15 м; AC = 15 см = 0,15 м; ωOA = 2 c-1; ω1 = 2,5 c-1.

K1.18. МИИТ. Теоретическая механика. 2012 год 300р.

Страницы