Онлайн-магазин готовых решений

Вы можете мгновенно получить на свой е-мэйл решение любой из этих задач, оплатив её стоимость через онлайн-сервис на нашем сайте. Подробные инструкции по оплате можно увидеть, кликнув на ссылку номера задачи.
Если найти нужную задачу не удаётся, Вы можете оформить Заказ.

Как использовать поиск
Всего задач, соответствующих запросу: 9
Номер Предмет Условие задачи Задачник Ценасортировать по убыванию
16136 Комбинаторика

Отмечены вершины и середины сторон правильного 11-угольника (то есть всего отмечено 22 точки). Сколько существует выпуклых четырёхугольников с вершинами в отмеченных точках?

50р.
16589 Комбинаторика

В строку записаны несколько букв О и Р в произвольном порядке (назовём это «словом»). Первым ходом между каждыми двумя соседними буквами исходного слова впишем дополнительные буквы по таким правилам:
-если соседние буквы одинаковые, между ними вписывается О;
-если соседние буквы разные, между ними вписывается Р.
Вторым ходом по тем же правилам впишем буквы между каждыми двумя соседними буквами полученного слова, и т.д. (например: ООР, ОООРР, ОООООРРОР, …). Пусть мы начали со слова ОР и сделали 55 ходов. Каких букв – О или Р – будет в получившемся слове больше и во сколько раз?

50р.
16212 Комбинаторика

Можно ли грани додекаэдра раскрасить в 6 цветов так, чтобы для любой тройки цветов нашлась вершина, в которой сходятся три грани этих трех цветов?

100р.
16054 Комбинаторика

Для каких натуральных n набор чисел 1, 2, ..., n можно разбить на две группы так, чтобы произведение чисел одной группы было равно сумме чисел другой группы?

100р.
16478 Комбинаторика

Число N обладает таким свойством: если в нём вычеркнуть несколько цифр (одну или больше, но чтобы что-то осталось), то всегда получается простое число или 1. Какое наибольшее число знаков может иметь N?

100р.
16050 Комбинаторика

У Миши есть кубики двух цветов. Он строит из них башню, ставя каждый следующий кубик на предыдущий. Запрещено использовать более 14 кубиков каждого из цветов. Миша заканчивает строить башню, как только в ней окажется 14 кубиков какого-то цвета. Сколько различных башен может построить Миша?

100р.
16426 Комбинаторика




Рассмотрим клеточные фигуры A и B (рис.). Пусть M - количество способов разрезать фигуру A на четырёхклеточные фигуры тетрамино, а N - количество способов разрезать фигуру B на четырёхклеточные фигуры тетрамино. Какое из чисел M или N больше? На сколько?

150р.
16543 Комбинаторика

На окружности отмечено 50 точек. Рассмотрим все треугольники с вершинами в них. Может ли среди них тупоугольных быть ровно в 2 раза больше, чем остроугольных?

200р.
16134 Комбинаторика

По периметру круглой площади растёт 40 берёз. Сколькими способами можно вырубить 11 берёз так, чтобы в их число не попали никакие две берёзы, стоящие рядом?

200р.