Внимание!

В связи с техническими проблемами на стороне платёжного сервиса Робокасса приём платежей через раздел Задач с решениями временно приостановлен. Ориентировочно все взаиморасчеты планируется восстановить в полном объеме 12 апреля, возможно это произойдёт раньше.
Таким образом, сейчас решение задачи можно получить, только перечислив деньги на наши реквизиты и сообщив нам любым удобным способом. В ответном сообщении мы вышлем решение задач.

Онлайн-магазин готовых решений

Вы можете мгновенно получить на свой е-мэйл решение любой из этих задач, оплатив её стоимость через онлайн-сервис на нашем сайте. Подробные инструкции по оплате можно увидеть, кликнув на ссылку номера задачи.
Если найти нужную задачу не удаётся, Вы можете оформить Заказ.

Как использовать поиск
Всего задач, соответствующих запросу: 13
Номер Предмет Условие задачи Задачник Цена
5281 Математическая логика

Доказать тождество на основании основных тождеств: $$(A \cap B) \cup C = (A \cup C) \cap (B \cap C)$$

5р.
5282 Математическая логика

Доказать тождество на основании основных тождеств: $$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

5р.
5283 Математическая логика

Составить таблицу истинности для функции $$f(x_1;x_2 )=(\overline{x_1}\to (x_1 \cap x_2 ))\cup \overline{(\overline{x_1}\cap x_2)}$$

5р.
5284 Математическая логика

Составить таблицу истинности для функции $$f(x_1;x_2 )=(\overline{x_2}\to (x_1\cup \overline{x_2} ))\to (\overline{x_1}\cap x_2)$$

5р.
14342 Математическая логика

С помощью равносильных преобразований упростить формулу: $$((A\land B)\leftrightarrow B)\leftrightarrow(B\rightarrow A)$$

100р.
14344 Математическая логика

Проверить, является ли формула тавтологией с помощью равносильных преобразований. Ответ проверить с помощью таблицы истинности: $$(P\rightarrow Q)\rightarrow((P\rightarrow(Q\rightarrow R))\rightarrow(P\rightarrow R))$$

100р.
14346 Математическая логика

Проверить, справедливо ли следующее логическое следование: $$(P\vee\bar{R})\rightarrow Q\ \models\ (P\rightarrow Q)\land R$$

100р.
15864 Математическая логика

Упростить выражение: $$\overline{(A\backslash (B \vee C))} \land (\overline{((\bar{A} \vee B) \backslash (A \vee C))} \vee (B\backslash C))$$

100р.
15918 Математическая логика

Дано универсальное множество U и три его подмножества A, B и C. Известно, что $|U|=17$, $|\bar{A}|=9$, $|\bar{B}|=5$, $|\bar{C}|=6$, $|\bar{A}\cap\bar{B}|=4$, $|\bar{A}\cap\bar{C}|=3$, $|\bar{B}\cap\bar{C}|=1$, $|\bar{A}\cap\bar{B}\cap\bar{C}|=1$. Найти $|\bar{B}\cap C|$, $|\bar{A}\cap B|$, $|A\cap\bar{B}\cap\bar{C}|$, $|\bar{A}\cap\bar{B}\cap C|$, $|A\cap B\cap C|$.

100р.
16496 Математическая логика

Пусть A, B, C являются подмножествами некоторого универсального множества E. С помощью диаграмм Эйлера покажите, что выполняются соотношения:
а) $\overline{A\cup B}=\overline{A} \cap \overline{B}$,
б) $\left(A\backslash B\right)\cup \left(A\backslash C\right)=A\backslash \left(B\cap C\right)$,
в) $A\cap \left(B\cup C\right)=\left(A\cap B\right)\cup \left(A\cap C\right)$.

50р.
16498 Математическая логика

Симметрической разностью множеств A и B (обозначение $A\Delta B$) называют $\left(A\backslash B\right)\cup \left(B\backslash A\right)$.
а) С помощью диаграмм Эйлера покажите, что $A\Delta B=\left(A\cup B\right)\backslash \left(A\cap B\right)$.
б) Докажите, что $A\Delta B=\left(A\cup B\right)\backslash \left(A\cap B\right)$

50р.
16500 Математическая логика

Упростите выражения, а затем ответьте на вопрос:
а) $\overline{\overline{AB}+BC}$. Истинно или ложно данное высказывание, если известно, что B и C истинны?
б) $\overline{(\overline{A\to C})}\cdot(B+(\overline{C}\to A))$. Истинно или ложно данное высказывание, если A и B ложны, а C - истинно?
в) $(\overline{XY+\overline{XY}})(X+\overline{Y})$. Истинно или ложно данное высказывание, если X и Y ложны?
г) $\overline{(X+Y)\to (\overline{Y+Z})}$. Истинно или ложно данное высказывание, если X и Z истинны, а Y - ложно.

50р.
16504 Математическая логика

14 школьников участвовало в олимпиаде по истории, 16 – в олимпиаде по географии, 10 – в олимпиаде по физике. 8 учеников участвовали в олимпиадах и по истории, и по географии, 4 – в олимпиадах и по истории, и по физике, 9 – в олимпиадах и по географии, и по физике. Во всех трёх олимпиадах участвовали 3 человека. Сколько всего было школьников?

30р.