В связи с техническими проблемами на стороне платёжного сервиса Робокасса приём платежей через раздел Задач с решениями временно приостановлен. Ориентировочно все взаиморасчеты планируется восстановить в полном объеме 12 апреля, возможно это произойдёт раньше.
Таким образом, сейчас решение задачи можно получить, только перечислив деньги на наши реквизиты и сообщив нам любым удобным способом. В ответном сообщении мы вышлем решение задач.
Онлайн-магазин готовых решений
Если найти нужную задачу не удаётся, Вы можете оформить Заказ.
Как использовать поиск
Номер | Предмет | Условие задачи | Задачник | Цена | ||
---|---|---|---|---|---|---|
5281 | Математическая логика |
Доказать тождество на основании основных тождеств: $$(A \cap B) \cup C = (A \cup C) \cap (B \cap C)$$ |
5р. | |||
5282 | Математическая логика |
Доказать тождество на основании основных тождеств: $$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$ |
5р. | |||
5283 | Математическая логика |
Составить таблицу истинности для функции $$f(x_1;x_2 )=(\overline{x_1}\to (x_1 \cap x_2 ))\cup \overline{(\overline{x_1}\cap x_2)}$$ |
5р. | |||
5284 | Математическая логика |
Составить таблицу истинности для функции $$f(x_1;x_2 )=(\overline{x_2}\to (x_1\cup \overline{x_2} ))\to (\overline{x_1}\cap x_2)$$ |
5р. | |||
14342 | Математическая логика |
С помощью равносильных преобразований упростить формулу: $$((A\land B)\leftrightarrow B)\leftrightarrow(B\rightarrow A)$$ |
100р. | |||
14344 | Математическая логика |
Проверить, является ли формула тавтологией с помощью равносильных преобразований. Ответ проверить с помощью таблицы истинности: $$(P\rightarrow Q)\rightarrow((P\rightarrow(Q\rightarrow R))\rightarrow(P\rightarrow R))$$ |
100р. | |||
14346 | Математическая логика |
Проверить, справедливо ли следующее логическое следование: $$(P\vee\bar{R})\rightarrow Q\ \models\ (P\rightarrow Q)\land R$$ |
100р. | |||
15864 | Математическая логика |
Упростить выражение: $$\overline{(A\backslash (B \vee C))} \land (\overline{((\bar{A} \vee B) \backslash (A \vee C))} \vee (B\backslash C))$$ |
100р. | |||
15918 | Математическая логика |
Дано универсальное множество U и три его подмножества A, B и C. Известно, что $|U|=17$, $|\bar{A}|=9$, $|\bar{B}|=5$, $|\bar{C}|=6$, $|\bar{A}\cap\bar{B}|=4$, $|\bar{A}\cap\bar{C}|=3$, $|\bar{B}\cap\bar{C}|=1$, $|\bar{A}\cap\bar{B}\cap\bar{C}|=1$. Найти $|\bar{B}\cap C|$, $|\bar{A}\cap B|$, $|A\cap\bar{B}\cap\bar{C}|$, $|\bar{A}\cap\bar{B}\cap C|$, $|A\cap B\cap C|$. |
100р. | |||
16496 | Математическая логика |
Пусть A, B, C являются подмножествами некоторого универсального множества E. С помощью диаграмм Эйлера покажите, что выполняются соотношения: |
50р. | |||
16498 | Математическая логика |
Симметрической разностью множеств A и B (обозначение $A\Delta B$) называют $\left(A\backslash B\right)\cup \left(B\backslash A\right)$. |
50р. | |||
16500 | Математическая логика |
Упростите выражения, а затем ответьте на вопрос: |
50р. | |||
16504 | Математическая логика |
14 школьников участвовало в олимпиаде по истории, 16 – в олимпиаде по географии, 10 – в олимпиаде по физике. 8 учеников участвовали в олимпиадах и по истории, и по географии, 4 – в олимпиадах и по истории, и по физике, 9 – в олимпиадах и по географии, и по физике. Во всех трёх олимпиадах участвовали 3 человека. Сколько всего было школьников? |
30р. |