16382 |
Геометрия |

Две окружности радиусов R и r (R > r) внешне касаются в точке K. Одна прямая касается окружностей: большей в точке A, меньшей в точке C. Другая прямая касается окружностей: большей в точке B, меньшей в точке D. Через точку K проведена общая внутренняя касательная, пересекающая прямую AC в точке M, а BD - в точке N.
а) Найти угол AKC.
б) Найти угол O1MO2, где O1 и O2 - центры соответственно большей и меньшей окружностей.
в) Найти длину отрезка AC.
г) Доказать параллельность прямых AB, MN, CD.
|
|
|
150р. |
|
16384 |
Электростатика |

Два точечных заряда q1 и q2 находятся в вакууме на расстоянии r друг от друга (рис. 1). Найти модуль напряженности электричеcкого поля, создаваемого этими зарядами, в точке A, находящейся на расстоянии a от первого заряда и на расстоянии b от второго заряда.
№ варианта |
q1, q2, r, a, b |
1 |
q1 = 2 нКл, q2 = -3 нКл, r = 10 см, a = 5 см, b = 7 см |
|
4-1-1 |
ТГУ. Физика |
75р. |
|
16386 |
Электростатика |

Два точечных заряда q1 и q2 находятся в вакууме на расстоянии r друг от друга (рис. 1). Найти модуль напряженности электричеcкого поля, создаваемого этими зарядами, в точке A, находящейся на расстоянии a от первого заряда и на расстоянии b от второго заряда.
№ варианта |
q1, q2, r, a, b |
2 |
q1 = -2 нКл, q2 = -1 нКл, r = 10 см, a = 8 см, b = 7 см |
|
4-1-2 |
ТГУ. Физика |
75р. |
|
16388 |
Электростатика |

Два точечных заряда q1 и q2 находятся в вакууме на расстоянии r друг от друга (рис. 1). Найти модуль напряженности электричеcкого поля, создаваемого этими зарядами, в точке A, находящейся на расстоянии a от первого заряда и на расстоянии b от второго заряда.
№ варианта |
q1, q2, r, a, b |
3 |
q1 = 1 нКл, q2 = 3 нКл, r = 7 см, a = 3 см, b = 5 см |
|
4-1-3 |
ТГУ. Физика |
75р. |
|
16390 |
Электростатика |

Два точечных заряда q1 и q2 находятся в вакууме на расстоянии r друг от друга (рис. 1). Найти модуль напряженности электричеcкого поля, создаваемого этими зарядами, в точке A, находящейся на расстоянии a от первого заряда и на расстоянии b от второго заряда.
№ варианта |
q1, q2, r, a, b |
4 |
q1 = 5 нКл, q2 = -3 нКл, r = 7 см, a = 3 см, b = 5 см |
|
3-1-4 |
ТГУ. Физика |
75р. |
|
16392 |
Электростатика |

Два точечных заряда q1 и q2 находятся в вакууме на расстоянии r друг от друга (рис. 1). Найти модуль напряженности электричеcкого поля, создаваемого этими зарядами, в точке A, находящейся на расстоянии a от первого заряда и на расстоянии b от второго заряда.
№ варианта |
q1, q2, r, a, b |
5 |
q1 = -1 нКл, q2 = -2 нКл, r = 9 см, a = 3 см, b = 7 см |
|
4-1-5 |
ТГУ. Физика |
75р. |
|
16394 |
Электростатика |

Точечный заряд q = –1 нКл массой m = 1 г, подвешенный в поле силы тяжести на невесомой нерастяжимой нити длиной l = 50 см, вращается в горизонтальной плоскости (рис. 2) по окружности радиусом r. Точка A подвеса нити находится на вертикальном бесконечно длинном стержне, равномерно заряженном с линейной плотностью заряда λ. Найти частоту n вращения заряда вокруг стержня. Ускорение свободного падения g = 9,81 м/c2, электрическая постоянная ε0 = 8,85·10-12 Ф/м.
№ варианта |
r, λ |
1 |
r = 45 см, λ = 2 нКл/м |
|
4-2-1 |
ТГУ. Физика |
100р. |
|
16396 |
Электростатика |

Точечный заряд q = –1 нКл массой m = 1 г, подвешенный в поле силы тяжести на невесомой нерастяжимой нити длиной l = 50 см, вращается в горизонтальной плоскости (рис. 2) по окружности радиусом r. Точка A подвеса нити находится на вертикальном бесконечно длинном стержне, равномерно заряженном с линейной плотностью заряда λ. Найти частоту n вращения заряда вокруг стержня. Ускорение свободного падения g = 9,81 м/c2, электрическая постоянная ε0 = 8,85·10-12 Ф/м.
№ варианта |
r, λ |
2 |
r = 40 см, λ = 2 нКл/м |
|
4-2-2 |
ТГУ. Физика |
100р. |
|
16398 |
Электростатика |

Точечный заряд q = –1 нКл массой m = 1 г, подвешенный в поле силы тяжести на невесомой нерастяжимой нити длиной l = 50 см, вращается в горизонтальной плоскости (рис. 2) по окружности радиусом r. Точка A подвеса нити находится на вертикальном бесконечно длинном стержне, равномерно заряженном с линейной плотностью заряда λ. Найти частоту n вращения заряда вокруг стержня. Ускорение свободного падения g = 9,81 м/c2, электрическая постоянная ε0 = 8,85·10-12 Ф/м.
№ варианта |
r, λ |
3 |
r = 30 см, λ = 2 нКл/м |
|
4-2-3 |
ТГУ. Физика |
100р. |
|
16400 |
Электростатика |

Точечный заряд q = –1 нКл массой m = 1 г, подвешенный в поле силы тяжести на невесомой нерастяжимой нити длиной l = 50 см, вращается в горизонтальной плоскости (рис. 2) по окружности радиусом r. Точка A подвеса нити находится на вертикальном бесконечно длинном стержне, равномерно заряженном с линейной плотностью заряда λ. Найти частоту n вращения заряда вокруг стержня. Ускорение свободного падения g = 9,81 м/c2, электрическая постоянная ε0 = 8,85·10-12 Ф/м.
№ варианта |
r, λ |
4 |
r = 20 см, λ = 2 нКл/м |
|
4-2-4 |
ТГУ. Физика |
100р. |
|
16402 |
Электростатика |

Точечный заряд q = –1 нКл массой m = 1 г, подвешенный в поле силы тяжести на невесомой нерастяжимой нити длиной l = 50 см, вращается в горизонтальной плоскости (рис. 2) по окружности радиусом r. Точка A подвеса нити находится на вертикальном бесконечно длинном стержне, равномерно заряженном с линейной плотностью заряда λ. Найти частоту n вращения заряда вокруг стержня. Ускорение свободного падения g = 9,81 м/c2, электрическая постоянная ε0 = 8,85·10-12 Ф/м.
№ варианта |
r, λ |
5 |
r = 10 см, λ = 2 нКл/м |
|
4-2-5 |
ТГУ. Физика |
100р. |
|
16404 |
Электростатика |

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.
№ варианта |
ρ0, d |
1 |
ρ0 = 1 нКл/м3, d = 10 см |
|
4-3-1 |
ТГУ. Физика |
200р. |
|
16406 |
Электростатика |

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.
№ варианта |
ρ0, d |
2 |
ρ0 = 1 нКл/м3, d = 20 см |
|
4-3-2 |
ТГУ. Физика |
200р. |
|
16408 |
Электростатика |

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.
№ варианта |
ρ0, d |
3 |
ρ0 = 1 нКл/м3, d = 30 см |
|
4-3-3 |
ТГУ. Физика |
200р. |
|
16410 |
Электростатика |

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.
№ варианта |
ρ0, d |
4 |
ρ0 = 1 нКл/м3, d = 40 см |
|
4-3-4 |
ТГУ. Физика |
200р. |
|
16412 |
Электростатика |

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.
№ варианта |
ρ0, d |
5 |
ρ0 = 1 нКл/м3, d = 50 см |
|
4-3-5 |
ТГУ. Физика |
200р. |
|
16414 |
Электростатика |

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.
№ варианта |
ρ0, d |
6 |
ρ0 = 2 нКл/м3, d = 10 см |
|
4-3-6 |
ТГУ. Физика |
200р. |
|
16416 |
Электростатика |

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.
№ варианта |
ρ0, d |
7 |
ρ0 = 2 нКл/м3, d = 20 см |
|
4-3-7 |
ТГУ. Физика |
200р. |
|
16418 |
Электростатика |

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.
№ варианта |
ρ0, d |
8 |
ρ0 = 2 нКл/м3, d = 30 см |
|
4-3-7 |
ТГУ. Физика |
200р. |
|
16420 |
Электростатика |

Электрический заряд распределен в пространственном слое между двумя параллельными бесконечными плоскостями (рис. 3) симметрично относительно центральной плоскости x = 0 с объемной плотностью заряда $\rho(x)=\rho_0(1-(\frac xd)^2)$, зависящей от координаты x точки. Ось X перпендикулярна слою. Толщина слоя 2d. Найти с помощью теоремы Гаусса зависимость проекции EX на ось X вектора напряженности электрического поля от координаты точки х. Построить трафик этой зависимости Ex(x) в интервале изменения координаты x от - 2d до 2d.
№ варианта |
ρ0, d |
10 |
ρ0 = 2 нКл/м3, d = 50 см |
|
4-3-10 |
ТГУ. Физика |
200р. |
|
16422 |
Математика |
Сколькими способами в таблицу 7×7 можно расставить цифры (от 0 до 9) так, чтобы сумма цифр в каждом квадрате 2×2 не превышала 12, а сумма всех цифр в таблице была максимально возможной?
|
|
|
100р. |
|