Онлайн-магазин готовых решений

Вы можете мгновенно получить на свой е-мэйл решение любой из этих задач, оплатив её стоимость через онлайн-сервис на нашем сайте. Подробные инструкции по оплате можно увидеть, кликнув на ссылку номера задачи.
Если найти нужную задачу не удаётся, Вы можете оформить Заказ.

Как использовать поиск
Всего задач, соответствующих запросу: 6923
Номер Предмет Условие задачи Задачник Ценасортировать по убыванию
5116 Теоретическая механика

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Составить уравнение вращения диска турбины при пуске в ход, если угол поворота пропорционален кубу времени и при t1 = 4 с, угловая скорость диска достигла значения ω1 = 96 с-1. Найти скорость и ускорение точки диска в момент времени t2 = 5 с, если расстояние до этой точки от оси вращения равно 0,5 м.

K4.15 Теоретическая механика 2 300р.
10890 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20. Однородная балка длиной l и весом P нагружена парой сил с моментом M и удерживается под углом 30° к горизонту невесомыми стержнями AC и AD и наклонной плоскостью EK. Определить давление балки на опорную плоскость и усилия в стержнях. P = 20 кН; M = 10 кН∙м; l = 4 м; α = 60°.

C3.8. Теоретическая механика 2 300р.
6365 Теоретическая механика




СОЧЛЕНЕННАЯ СИСТЕМА ТЕЛ.
Сочлененная система, состоит из двух стержней, соединенных неподвижным цилиндрическим шарниром либо свободно опирающихся друг на друга, и имеет внешние опоры, изображенные на рисунке. Внешние опоры могут содержать жесткую заделку, неподвижный цилиндрический шарнир, невесомый стержень или нить, подвижную опору. Система нагружена равномерно распределенной нагрузкой интенсивностью q и (или) линейно распределенной нагрузкой с максимальной интенсивностью qmax, парой сил с моментом М1 и силой F1.
Определить реакции внешних и внутренних связей, наложенных на перемещения точек заданной системы тел.
Варианты расчетных схем в соответствии с вариантами контрольных работ изображены на рисунке. Числовые значения параметров приведены в таблице.
Числовые значения параметров контрольной работы С2

Номер варианта № Дано a, м b, м c, м d, м M1, кНм F1, Н qm, Н/м q, Н/м α, ° β, ° γ, °
6 1 5 2 3 1 20 25 4 1,6 50 15 120
300р.
5064 Теоретическая механика

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Диск турбины, вышедшей из состояния покоя, вращается вокруг неподвижной оси по закону φ = Аt3 + Вt2, где φ задан в радианах, а время t - в секундах; А и В - постоянные коэффициенты. В момент времени t3 = 2 с и t2 = 3 с угловая скорость диска достигает значений ω1 = 2 с-1 и ω2 = 3 с-1. Определить угловое ускорение точки диска, отстоящей от оси вращения на 30 см, в момент времени t3 = 4 с.

K4.6 Теоретическая механика 2 300р.
11274 Теоретическая механика

КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.

№ варианта S = S(t), cм R, см Время t1, с
К2.17 4cos(2πt) 6sin(2πt) 1/3
K2.17 Теоретическая механика 2 300р.
14604 Теоретическая механика




ПЛОСКО-ПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Для заданного положения механизма найти скорости точек В и С, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис. К6.1-К6.20.
OA = 30 см; AB = 60 см; AC = 30 см; ωOA = 6 с-1

K6.11 Теоретическая механика 2 300р.
11210 Теоретическая механика

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.6 5sin(πt/3) 3cos(πt/3) - 2 2
K1.6 Теоретическая механика 2 300р.
8124 Электротехника




ЗАДАНИЕ № 2 «РАСЧЕТ ТРЁХФАЗНОЙ ЦЕПИ»
3.1. Внутри здания сети внутреннего электроснабжения выполнены по схеме "звезда" с нейтральным проводом. Отдельные помещения подключены к разным фазам трехфазного источника электроэнергии с линейным напряжением Uл = 380 В и частотой тока f = 50 Гц. На основании данных табл. 3.1 - 3.2 определить для своего варианта (последняя цифра трехзначного варианта из предыдущего задания – номер строки в табл. 3.2, предпоследняя цифра – номер строки в табл. 3.1) нагрузку каждой фазы, причем электропотребители в фазе включаются параллельно. Считая лампу накачивания (ЛН) активной нагрузкой, калорифер (К), электродвигатель (ЭД) и трансформатор (ТР) активно-индуктивной нагрузкой, начертить электрическую схему замещения рассчитываемой трехфазной цепи для своего варианта.
3.2. Выполнить анализ электрического состояния полученной в п. 3.1 схемы при наличии нейтрального провода:
1) определить активное, реактивное и полное сопротивления каждого электропотребителя;
2) рассчитать токи, протекающие через каждый электропотребитель (токи в параллельных ветвях каждой фазы);
3) определить для каждой фазы полное сопротивление, активную, реактивную и полную мощность, коэффициент мощности;
4) рассчитать линейные токи и ток в нейтральном проводе;
5) определить для всей трехфазной нагрузки активную PН, реактивную QH и полную SH мощности, коэффициент мощности cos φH и составить баланс мощностей;
6) построить в масштабе совмещенную векторную диаграмму напряжений и токов.
Таблица 3.1. Вид нагрузки в фазах

Номер строки Электроприемники в фазах
Фаза A Фаза B Фаза C
2 ЛН, ЭД ЛН, К ЛН, ТР

Таблица 3.2. Параметры нагрузки

Номер строки ЛН К ТР Эд
PЛН PК cos φК SТР cos φТР PЭД КПД cos φЭД
9 100 400 1 1600 0,5 400 0,74 0,76

3.3. Примечания:
1. Для всех токов и напряжений определить действующее значение и начальную фазу.
2. На схеме замещения изображать активную нагрузку в виде резистора, активно-индуктивную нагрузку в виде последовательного соединения резистора и идеальной индуктивной катушки.
3. Баланс мощностей должен сойтись с погрешностью менее 1%.

300р.
12482 Теоретическая механика




Для заданного механизма найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки.
OA = 30 см = 0,30 м; AB = 50 см = 0,50 м; AC = 25 см = 0,25 м; ωOA = 3 c-1.

K1.9 МИИТ. Теоретическая механика. 2012 год 300р.
8588 Теоретическая механика

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Колесо, имеющее неподвижную ось вращения, получило начальную угловую скорость 4π c-1. Сделав 20 оборотов, оно вследствие трения в подшипниках, остановилось. Определить угловое ускорение колеса, считая его постоянным, а также время вращения колеса до остановки.

K4.12 Теоретическая механика 2 300р.
11146 Теоретическая механика




ТРЕНИЕ СКОЛЬЖЕНИЯ И ТРЕНИЕ КАЧЕНИЯ
Расчетные схемы даны на рис. С8.14. Ящик стола имеет две симметрично расположенные ручки для выдвигания. Каково должно быть расстояние d между этими ручками, чтобы ящик при выдвигании не застревал? Ширина ящика и его длина соответственно a, b. Коэффициент трения скольжения равен f. Весом ящика пренебречь.

C8.14 Теоретическая механика 2 300р.
11228 Теоретическая механика

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.15 6sin(2πt) 4cos(2πt) 2/3
K1.15 Теоретическая механика 2 300р.
8142 Электротехника




ЗАДАНИЕ № 3 «РАСЧЕТ ЧЕТЫРЁХПОЛЮСНИКА»
На рис. 5.1 представлена Г-образная эквивалентная схема четырёхполюсника (ЧП), где Z1 – продольное сопротивление, Z2 – поперечное сопротивление.
Выполнить следующее:
1) начертить исходную схему ЧП;
2) свести полученную схему ЧП к Г-образной эквивалентной схеме ЧП, заменив трёхэлементные схемы замещения продольного и поперечного сопротивлений двухэлементными схемами: Z1 = R1 + jX1, Z2 = R2 + jX2. Дальнейший расчёт вести для эквивалентной схемы;
3) определить коэффициенты A – формы записи уравнений ЧП;
4) определить сопротивления холостого хода и короткого замыкания со стороны первичных (11’) и вторичных выводов (22’):
а) через A – параметры;
б) непосредственно через продольное и поперечное сопротивления для режимов холостого хода и короткого замыкания на соответствующих выводах;
5) определить характеристические сопротивления для выводов 11’ и 22’ и постоянную передачи ЧП;
6) определить комплексный коэффициент передачи по напряжению и передаточную функцию ЧП;
Таблица 5.1. Параметры элементов продольного и поперечного сопротивлений ЧП

Номер строки R, Ом L, мГ C, мкФ f0, кГц
5 60 0,5 1 60
300р.
8606 Теоретическая механика




ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
На рис. К3.5 показана схема механизма, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Кривошип O1А вращается вокруг оси O1 с постоянной угловой скоростью ω1 = ωO1A = 4 с-1. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек A, B, Д, Е, угловые скорости указанных шатунов и кривошипа О2В, а также ускорение точки В.

K5.5 Теоретическая механика 2 300р.
11164 Теоретическая механика




ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ЦЕНТРА ТЯЖЕСТИ ОДНОРОДНОГО ТЕЛА
Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.3. Размеры ферм даны в метрах, остальных тел - в сантиметрах.

C9.3 Теоретическая механика 2 300р.
8538 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.4.

C4.4_1 Теоретическая механика 300р.
5048 Теоретическая механика


ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.8.

C4.8_1 Теоретическая механика 300р.
11100 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунке.

C7.11 Теоретическая механика 2 300р.
9704 Теоретическая механика




Однородная прямоугольная плита весом P = 5 кН со сторонами AB = 3l = 2,4 м, BC = 2l = 2∙0,8 = 1,6 м закреплена в точке A сферическим шарниром, а в точке B цилиндрическим шарниром (подшипником) и удерживается в равновесии невесомым стержнем СС’ (рис. C2.4)

300р.
8462 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции. Схемы конструкций указаны на рисунке С1.8, исходные данные приведены в таблице.

Номер варианта P, кН G, кН M, кНм q, кН/м l, м α, град
C1.8 8 - 3 2 1 450
C1.8 МИИТ. Теоретическая механика. 2012 год 300р.
11036 Теоретическая механика




ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. C5.19 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4

Номер варианта Номера стержней Номера стержней Р1, кН Р2, кН
C5.19 7, 10, 2 5, 4 170 200
C5.19 Теоретическая механика 2 300р.
8936 Теоретическая механика




ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
Для заданного положения механизма найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис. K14.l.
OA = 30 см = 0,30 м; AB = 40 см = 0,40 м; AC = 15 см = 0,15 м; ωOA = 4 c-1.

K6.14 Теоретическая механика 2 300р.
8388 Теоретическая механика




ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
На рис. К3.18 показана схема механизма, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Ползун в данном положении механизма имеет скорость VB = 4 м/с и ускорение aB = 6 м/с2. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек А, Д, Е, угловые скорости указанных шатунов и кривошипа О1А, а также ускорение точки А.

K5.17 Теоретическая механика 2 300р.
10972 Теоретическая механика




СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.9, исходные данные приведены в табл. 1.

Номер варианта Р, кН G, кН M, кН∙м q, кН∙м l, м α, град
C1.9 10 15 6 - 1 30°
C1.9 Теоретическая механика 2 300р.
5126 Теоретическая механика


ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.18.

C4.18_1 Теоретическая механика 300р.
10908 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20.
Столб АВ нагружен силой P, распределенной нагрузкой интенсивности q и парой сил с моментом М. Определить реакции заделки.
P = 30 кH; q = 2 кН/м; М = 50 кН м; l1 = 4 м; l2 = 3 м.

C3.17. Теоретическая механика 2 300р.
5090 Теоретическая механика


ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.9.

C4.9_1 Теоретическая механика 300р.
10844 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.17, -исходные данные приведены в таблице 2.

Номер варианта Р1, кН P2, кН P3, кН M кН∙м a, м b, м α, град
С-2.4. 5 6 0 3 1.2 0.8 30°
C2.4. Теоретическая механика 2 300р.
8340 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.6 -исходные данные приведены в таблице 2.

Таблица 2
Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
С2.6 4 5 3 1,2 1,8 1.2 60°
C2.6 МИИТ. Теоретическая механика. 2012 год 300р.
10926 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. C4.6, исходные данные указаны в таблице 3.

Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
C4.6 2 2 1 1.8 2.5 0.8 60°
C4.6 Теоретическая механика 2 300р.
5101 Теоретическая механика

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. С3.6 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4

Номер варианта Номера стержней Номера стержней Р1, кН Р2, кН
С3.10 7, 11, 5 1, 2 160 100

В задаче № С 3.10 нужно поменять местами подвижный и неподвижный шарнир.

C3.10_1 Теоретическая механика 300р.
8246 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.14, исходные данные приведены в табл. 1.

Номер варианта P, кН G, кН M, кНм q, кН/м l, м α, град
C1.14 15 - 3 4 1 45°
C1.14 МИИТ. Теоретическая механика. 2012 год 300р.
10862 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.13, -исходные данные приведены в таблице 2.

Номер варианта Р1, кН P2, кН P3, кН M кН∙м a, м b, м α, град
С-2.13. 6 7 0 3 0.5 1.0 30°
C2.13. Теоретическая механика 2 300р.
8702 Теоретическая механика




ПРИНЦИП ДАЛАМБЕРА
Невесомый стержень ВС длиной l, на конце которого распо-ложен точечный груз С массой m, вращается вокруг вертикальной оси ОА (оси Оу) с постоянной угловой скоростью ω. Расстояние от шарнира В до оси вращения равно b. Определить значение угловой скорости ω, если стержень ВС отклонился от вертикали на угол φ.

Д6.20 Теоретическая механика 2 300р.
11246 Теоретическая механика

КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.

№ варианта S = S(t), cм R, см Время t1, с
К2.4 3cos(πt/3) - 2 5sin(πt/3) 4
K2.4 Теоретическая механика 2 300р.
3283 Теоретическая механика

с4
ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ.
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунке.

C4.7_1 Теоретическая механика 300р.
14574 Теоретическая механика




ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3

№ варианта Уравнение движения груза 1 S = S(t), см R2 r2 R3 r3 t1
К3.8 160t2 50 30 70 40 2
K3.8 Теоретическая механика 2 300р.
8624 Теоретическая механика




Горизонтальная трубка вращается вокруг вертикальной оси OZ с угловой скоростью ω = 2 с-1. Шарик М движется вдоль трубки по закону МоМ = 0,5t2 м (рис. К 2.13). Определить абсолютную скорость шарика М в момент времени t1=2с.

K7.3 Теоретическая механика 2 300р.
11182 Теоретическая механика




ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ЦЕНТРА ТЯЖЕСТИ ОДНОРОДНОГО ТЕЛА
Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.12. Размеры ферм даны в метрах, остальных тел - в сантиметрах.

C9.12 Теоретическая механика 2 300р.
8556 Теоретическая механика

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = x(t), у = y(t). найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.

Номер варианта х = х(t), cм у = у(t), см Время t1, с
K1.1 5t 2 - 5t2 1
K1.1_1 Теоретическая механика 300р.
14030 Теоретическая механика

При небольших скоростях сила сопротивления движению поезда выражается формулой $R=P+k \cdot v$, где Р и к — постоянные величины, v — скорость поезда. Найти закон движения поезда при его разгоне, если сила тяги электропоезда равна Т, а масса поезда равна m.

Д2.1 Теоретическая механика 2 300р.
11118 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунке.

C7.20 Теоретическая механика 2 300р.
9020 Теоретическая механика




ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК ДЕЙСТВИЯ ПРОСТРАНСТВЕННОЙ СИСТЕМЫ СИЛ
Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.

C2.14. Теоретическая механика 300р.
8490 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. С2.11, исходные данные указаны в таблице 3.

Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
С2.11 8 4 2.4 1.8 2.5 0.8 30°
C2.11_1 Теоретическая механика 300р.
11054 Теоретическая механика




Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.

C6.8 Теоретическая механика 2 300р.
8408 Теоретическая механика




ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. С3.14 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4

Номер варианта Номера стержней Номера стержней Р1, кН Р2, кН
С3.14 2,9,4 1,6 80 100
C3.14_1 Теоретическая механика 300р.
10990 Теоретическая механика




СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.18, исходные данные приведены в табл. 1.

Номер варианта Р, кН G, кН M, кН∙м q, кН∙м l, м α, град
C1.18 8 - 3 2 1 45°
C1.18 Теоретическая механика 2 300р.
14772 Теоретическая механика




Определить период малых свободных колебаний астатического маятника. Маятник состоит из жёсткого стержня длиной l, несущего на конце шарик массой m, зажатый между двумя горизонтальными пружинами жёсткости с . Массой стержня и трением в оси O пренебречь; пружины в положении равновесия считать ненапряжёнными. Найти условие устойчивости вертикального равновесного положения маятника.

Д9.14 Теоретическая механика 2 300р.
6493 Теоретическая механика




ПРОСТРАНСТВЕННАЯ СИСТЕМА СИЛ
Изогнутая под прямыми углами пространственная рама концом А заделана в неподвижную опору и нагружена равномерно распределенной нагрузкой интенсивностью q или линейное I распределенной нагрузкой с максимальной интенсивностью qmax, парой сил с моментом M и силой P, расположенной в плоскости перпендикулярной участку рамы длиной l4 и образующей угол α с прямой изображенной на рисунке. Определить опорные реакции рамы.

Номер варианта Дано: P, Н M, Н∙м q, Н/м l1, м l2, м l3, м l4, м α, °
20 5 200 500 300 1,8 1,2 1,4 1 150
300р.
8974 Теоретическая механика




ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис.
AB = R + r = 35 см = 0,35 м; r = 15 см =0,15 м; AC = 15 см = 0,15 м; ωOA = 2 c-1; ω1 = 2,5 c-1.

K1.18. МИИТ. Теоретическая механика. 2012 год 300р.

Страницы