5116 |
Теоретическая механика |
ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Составить уравнение вращения диска турбины при пуске в ход, если угол поворота пропорционален кубу времени и при t1 = 4 с, угловая скорость диска достигла значения ω1 = 96 с-1. Найти скорость и ускорение точки диска в момент времени t2 = 5 с, если расстояние до этой точки от оси вращения равно 0,5 м.
|
K4.15 |
Теоретическая механика 2 |
300р. |
|
10890 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20. Однородная балка длиной l и весом P нагружена парой сил с моментом M и удерживается под углом 30° к горизонту невесомыми стержнями AC и AD и наклонной плоскостью EK. Определить давление балки на опорную плоскость и усилия в стержнях. P = 20 кН; M = 10 кН∙м; l = 4 м; α = 60°.
|
C3.8. |
Теоретическая механика 2 |
300р. |
|
6365 |
Теоретическая механика |

СОЧЛЕНЕННАЯ СИСТЕМА ТЕЛ.
Сочлененная система, состоит из двух стержней, соединенных неподвижным цилиндрическим шарниром либо свободно опирающихся друг на друга, и имеет внешние опоры, изображенные на рисунке. Внешние опоры могут содержать жесткую заделку, неподвижный цилиндрический шарнир, невесомый стержень или нить, подвижную опору. Система нагружена равномерно распределенной нагрузкой интенсивностью q и (или) линейно распределенной нагрузкой с максимальной интенсивностью qmax, парой сил с моментом М1 и силой F1.
Определить реакции внешних и внутренних связей, наложенных на перемещения точек заданной системы тел.
Варианты расчетных схем в соответствии с вариантами контрольных работ изображены на рисунке. Числовые значения параметров приведены в таблице.
Числовые значения параметров контрольной работы С2
Номер варианта |
№ Дано |
a, м |
b, м |
c, м |
d, м |
M1, кНм |
F1, Н |
qm, Н/м |
q, Н/м |
α, ° |
β, ° |
γ, ° |
6 |
1 |
5 |
2 |
3 |
1 |
20 |
25 |
4 |
1,6 |
50 |
15 |
120 |
|
|
|
300р. |
|
5064 |
Теоретическая механика |
ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Диск турбины, вышедшей из состояния покоя, вращается вокруг неподвижной оси по закону φ = Аt3 + Вt2, где φ задан в радианах, а время t - в секундах; А и В - постоянные коэффициенты. В момент времени t3 = 2 с и t2 = 3 с угловая скорость диска достигает значений ω1 = 2 с-1 и ω2 = 3 с-1. Определить угловое ускорение точки диска, отстоящей от оси вращения на 30 см, в момент времени t3 = 4 с.
|
K4.6 |
Теоретическая механика 2 |
300р. |
|
11274 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.
№ варианта |
S = S(t), cм |
R, см |
Время t1, с |
К2.17 |
4cos(2πt) |
6sin(2πt) |
1/3 |
|
K2.17 |
Теоретическая механика 2 |
300р. |
|
14604 |
Теоретическая механика |

ПЛОСКО-ПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Для заданного положения механизма найти скорости точек В и С, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис. К6.1-К6.20.
OA = 30 см; AB = 60 см; AC = 30 см; ωOA = 6 с-1
|
K6.11 |
Теоретическая механика 2 |
300р. |
|
11210 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.
№ варианта |
х = х(t), cм |
у = у(t), см |
Время t1, с |
К1.6 |
5sin(πt/3) |
3cos(πt/3) - 2 |
2 |
|
K1.6 |
Теоретическая механика 2 |
300р. |
|
8124 |
Электротехника |

ЗАДАНИЕ № 2 «РАСЧЕТ ТРЁХФАЗНОЙ ЦЕПИ»
3.1. Внутри здания сети внутреннего электроснабжения выполнены по схеме "звезда" с нейтральным проводом. Отдельные помещения подключены к разным фазам трехфазного источника электроэнергии с линейным напряжением Uл = 380 В и частотой тока f = 50 Гц. На основании данных табл. 3.1 - 3.2 определить для своего варианта (последняя цифра трехзначного варианта из предыдущего задания – номер строки в табл. 3.2, предпоследняя цифра – номер строки в табл. 3.1) нагрузку каждой фазы, причем электропотребители в фазе включаются параллельно. Считая лампу накачивания (ЛН) активной нагрузкой, калорифер (К), электродвигатель (ЭД) и трансформатор (ТР) активно-индуктивной нагрузкой, начертить электрическую схему замещения рассчитываемой трехфазной цепи для своего варианта.
3.2. Выполнить анализ электрического состояния полученной в п. 3.1 схемы при наличии нейтрального провода:
1) определить активное, реактивное и полное сопротивления каждого электропотребителя;
2) рассчитать токи, протекающие через каждый электропотребитель (токи в параллельных ветвях каждой фазы);
3) определить для каждой фазы полное сопротивление, активную, реактивную и полную мощность, коэффициент мощности;
4) рассчитать линейные токи и ток в нейтральном проводе;
5) определить для всей трехфазной нагрузки активную PН, реактивную QH и полную SH мощности, коэффициент мощности cos φH и составить баланс мощностей;
6) построить в масштабе совмещенную векторную диаграмму напряжений и токов.
Таблица 3.1. Вид нагрузки в фазах
Номер строки |
Электроприемники в фазах |
Фаза A |
Фаза B |
Фаза C |
2 |
ЛН, ЭД |
ЛН, К |
ЛН, ТР |
Таблица 3.2. Параметры нагрузки
Номер строки |
ЛН |
К |
ТР |
Эд |
PЛН |
PК |
cos φК |
SТР |
cos φТР |
PЭД |
КПД |
cos φЭД |
9 |
100 |
400 |
1 |
1600 |
0,5 |
400 |
0,74 |
0,76 |
3.3. Примечания:
1. Для всех токов и напряжений определить действующее значение и начальную фазу.
2. На схеме замещения изображать активную нагрузку в виде резистора, активно-индуктивную нагрузку в виде последовательного соединения резистора и идеальной индуктивной катушки.
3. Баланс мощностей должен сойтись с погрешностью менее 1%.
|
|
|
300р. |
|
12482 |
Теоретическая механика |

Для заданного механизма найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки.
OA = 30 см = 0,30 м; AB = 50 см = 0,50 м; AC = 25 см = 0,25 м; ωOA = 3 c-1.
|
K1.9 |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|
8588 |
Теоретическая механика |
ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Колесо, имеющее неподвижную ось вращения, получило начальную угловую скорость 4π c-1. Сделав 20 оборотов, оно вследствие трения в подшипниках, остановилось. Определить угловое ускорение колеса, считая его постоянным, а также время вращения колеса до остановки.
|
K4.12 |
Теоретическая механика 2 |
300р. |
|
11146 |
Теоретическая механика |

ТРЕНИЕ СКОЛЬЖЕНИЯ И ТРЕНИЕ КАЧЕНИЯ
Расчетные схемы даны на рис. С8.14. Ящик стола имеет две симметрично расположенные ручки для выдвигания. Каково должно быть расстояние d между этими ручками, чтобы ящик при выдвигании не застревал? Ширина ящика и его длина соответственно a, b. Коэффициент трения скольжения равен f. Весом ящика пренебречь.
|
C8.14 |
Теоретическая механика 2 |
300р. |
|
11228 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.
№ варианта |
х = х(t), cм |
у = у(t), см |
Время t1, с |
К1.15 |
6sin(2πt) |
4cos(2πt) |
2/3 |
|
K1.15 |
Теоретическая механика 2 |
300р. |
|
8142 |
Электротехника |

ЗАДАНИЕ № 3 «РАСЧЕТ ЧЕТЫРЁХПОЛЮСНИКА»
На рис. 5.1 представлена Г-образная эквивалентная схема четырёхполюсника (ЧП), где Z1 – продольное сопротивление, Z2 – поперечное сопротивление.
Выполнить следующее:
1) начертить исходную схему ЧП;
2) свести полученную схему ЧП к Г-образной эквивалентной схеме ЧП, заменив трёхэлементные схемы замещения продольного и поперечного сопротивлений двухэлементными схемами: Z1 = R1 + jX1, Z2 = R2 + jX2. Дальнейший расчёт вести для эквивалентной схемы;
3) определить коэффициенты A – формы записи уравнений ЧП;
4) определить сопротивления холостого хода и короткого замыкания со стороны первичных (11’) и вторичных выводов (22’):
а) через A – параметры;
б) непосредственно через продольное и поперечное сопротивления для режимов холостого хода и короткого замыкания на соответствующих выводах;
5) определить характеристические сопротивления для выводов 11’ и 22’ и постоянную передачи ЧП;
6) определить комплексный коэффициент передачи по напряжению и передаточную функцию ЧП;
Таблица 5.1. Параметры элементов продольного и поперечного сопротивлений ЧП
Номер строки |
R, Ом |
L, мГ |
C, мкФ |
f0, кГц |
5 |
60 |
0,5 |
1 |
60 |
|
|
|
300р. |
|
8606 |
Теоретическая механика |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
На рис. К3.5 показана схема механизма, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Кривошип O1А вращается вокруг оси O1 с постоянной угловой скоростью ω1 = ωO1A = 4 с-1. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек A, B, Д, Е, угловые скорости указанных шатунов и кривошипа О2В, а также ускорение точки В.
|
K5.5 |
Теоретическая механика 2 |
300р. |
|
11164 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ЦЕНТРА ТЯЖЕСТИ ОДНОРОДНОГО ТЕЛА
Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.3. Размеры ферм даны в метрах, остальных тел - в сантиметрах.
|
C9.3 |
Теоретическая механика 2 |
300р. |
|
8538 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.4.
|
C4.4_1 |
Теоретическая механика |
300р. |
|
5048 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.8.
|
C4.8_1 |
Теоретическая механика |
300р. |
|
11100 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунке.
|
C7.11 |
Теоретическая механика 2 |
300р. |
|
9704 |
Теоретическая механика |

Однородная прямоугольная плита весом P = 5 кН со сторонами AB = 3l = 2,4 м, BC = 2l = 2∙0,8 = 1,6 м закреплена в точке A сферическим шарниром, а в точке B цилиндрическим шарниром (подшипником) и удерживается в равновесии невесомым стержнем СС’ (рис. C2.4)
|
|
|
300р. |
|
8462 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции. Схемы конструкций указаны на рисунке С1.8, исходные данные приведены в таблице.
Номер варианта |
P, кН |
G, кН |
M, кНм |
q, кН/м |
l, м |
α, град |
C1.8 |
8 |
- |
3 |
2 |
1 |
450 |
|
C1.8 |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|
11036 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. C5.19 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4
Номер варианта |
Номера стержней |
Номера стержней |
Р1, кН |
Р2, кН |
C5.19 |
7, 10, 2 |
5, 4 |
170 |
200 |
|
C5.19 |
Теоретическая механика 2 |
300р. |
|
8936 |
Теоретическая механика |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
Для заданного положения механизма найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис. K14.l.
OA = 30 см = 0,30 м; AB = 40 см = 0,40 м; AC = 15 см = 0,15 м; ωOA = 4 c-1.
|
K6.14 |
Теоретическая механика 2 |
300р. |
|
8388 |
Теоретическая механика |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
На рис. К3.18 показана схема механизма, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Ползун в данном положении механизма имеет скорость VB = 4 м/с и ускорение aB = 6 м/с2. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек А, Д, Е, угловые скорости указанных шатунов и кривошипа О1А, а также ускорение точки А.
|
K5.17 |
Теоретическая механика 2 |
300р. |
|
10972 |
Теоретическая механика |

СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.9, исходные данные приведены в табл. 1.
Номер варианта |
Р, кН |
G, кН |
M, кН∙м |
q, кН∙м |
l, м |
α, град |
C1.9 |
10 |
15 |
6 |
- |
1 |
30° |
|
C1.9 |
Теоретическая механика 2 |
300р. |
|
5126 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.18.
|
C4.18_1 |
Теоретическая механика |
300р. |
|
10908 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20.
Столб АВ нагружен силой P, распределенной нагрузкой интенсивности q и парой сил с моментом М. Определить реакции заделки.
P = 30 кH; q = 2 кН/м; М = 50 кН м; l1 = 4 м; l2 = 3 м.
|
C3.17. |
Теоретическая механика 2 |
300р. |
|
5090 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.9.
|
C4.9_1 |
Теоретическая механика |
300р. |
|
10844 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.17, -исходные данные приведены в таблице 2.
Номер варианта |
Р1, кН |
P2, кН |
P3, кН |
M кН∙м |
a, м |
b, м |
α, град |
С-2.4. |
5 |
6 |
0 |
3 |
1.2 |
0.8 |
30° |
|
C2.4. |
Теоретическая механика 2 |
300р. |
|
8340 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.6 -исходные данные приведены в таблице 2.
Таблица 2
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
С2.6 |
4 |
5 |
3 |
1,2 |
1,8 |
1.2 |
60° |
|
C2.6 |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|
10926 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. C4.6, исходные данные указаны в таблице 3.
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
C4.6 |
2 |
2 |
1 |
1.8 |
2.5 |
0.8 |
60° |
|
C4.6 |
Теоретическая механика 2 |
300р. |
|
5101 |
Теоретическая механика |
ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. С3.6 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4
Номер варианта |
Номера стержней |
Номера стержней |
Р1, кН |
Р2, кН |
С3.10 |
7, 11, 5 |
1, 2 |
160 |
100 |
В задаче № С 3.10 нужно поменять местами подвижный и неподвижный шарнир.
|
C3.10_1 |
Теоретическая механика |
300р. |
|
8246 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.14, исходные данные приведены в табл. 1.
Номер варианта |
P, кН |
G, кН |
M, кНм |
q, кН/м |
l, м |
α, град |
C1.14 |
15 |
- |
3 |
4 |
1 |
45° |
|
C1.14 |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|
10862 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.13, -исходные данные приведены в таблице 2.
Номер варианта |
Р1, кН |
P2, кН |
P3, кН |
M кН∙м |
a, м |
b, м |
α, град |
С-2.13. |
6 |
7 |
0 |
3 |
0.5 |
1.0 |
30° |
|
C2.13. |
Теоретическая механика 2 |
300р. |
|
8702 |
Теоретическая механика |

ПРИНЦИП ДАЛАМБЕРА
Невесомый стержень ВС длиной l, на конце которого распо-ложен точечный груз С массой m, вращается вокруг вертикальной оси ОА (оси Оу) с постоянной угловой скоростью ω. Расстояние от шарнира В до оси вращения равно b. Определить значение угловой скорости ω, если стержень ВС отклонился от вертикали на угол φ.
|
Д6.20 |
Теоретическая механика 2 |
300р. |
|
11246 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.
№ варианта |
S = S(t), cм |
R, см |
Время t1, с |
К2.4 |
3cos(πt/3) - 2 |
5sin(πt/3) |
4 |
|
K2.4 |
Теоретическая механика 2 |
300р. |
|
3283 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ.
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунке.
|
C4.7_1 |
Теоретическая механика |
300р. |
|
14574 |
Теоретическая механика |

ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3
№ варианта |
Уравнение движения груза 1 S = S(t), см |
R2 |
r2 |
R3 |
r3 |
t1 |
К3.8 |
160t2 |
50 |
30 |
70 |
40 |
2 |
|
K3.8 |
Теоретическая механика 2 |
300р. |
|
8624 |
Теоретическая механика |

Горизонтальная трубка вращается вокруг вертикальной оси OZ с угловой скоростью ω = 2 с-1. Шарик М движется вдоль трубки по закону МоМ = 0,5t2 м (рис. К 2.13). Определить абсолютную скорость шарика М в момент времени t1=2с.
|
K7.3 |
Теоретическая механика 2 |
300р. |
|
11182 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ЦЕНТРА ТЯЖЕСТИ ОДНОРОДНОГО ТЕЛА
Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.12. Размеры ферм даны в метрах, остальных тел - в сантиметрах.
|
C9.12 |
Теоретическая механика 2 |
300р. |
|
8556 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = x(t), у = y(t). найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.
Номер варианта |
х = х(t), cм |
у = у(t), см |
Время t1, с |
K1.1 |
5t |
2 - 5t2 |
1 |
|
K1.1_1 |
Теоретическая механика |
300р. |
|
14030 |
Теоретическая механика |
При небольших скоростях сила сопротивления движению поезда выражается формулой $R=P+k \cdot v$, где Р и к — постоянные величины, v — скорость поезда. Найти закон движения поезда при его разгоне, если сила тяги электропоезда равна Т, а масса поезда равна m.
|
Д2.1 |
Теоретическая механика 2 |
300р. |
|
11118 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунке.
|
C7.20 |
Теоретическая механика 2 |
300р. |
|
9020 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК ДЕЙСТВИЯ ПРОСТРАНСТВЕННОЙ СИСТЕМЫ СИЛ
Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.
|
C2.14. |
Теоретическая механика |
300р. |
|
8490 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. С2.11, исходные данные указаны в таблице 3.
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
С2.11 |
8 |
4 |
2.4 |
1.8 |
2.5 |
0.8 |
30° |
|
C2.11_1 |
Теоретическая механика |
300р. |
|
11054 |
Теоретическая механика |

Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.
|
C6.8 |
Теоретическая механика 2 |
300р. |
|
8408 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. С3.14 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4
Номер варианта |
Номера стержней |
Номера стержней |
Р1, кН |
Р2, кН |
С3.14 |
2,9,4 |
1,6 |
80 |
100 |
|
C3.14_1 |
Теоретическая механика |
300р. |
|
10990 |
Теоретическая механика |

СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.18, исходные данные приведены в табл. 1.
Номер варианта |
Р, кН |
G, кН |
M, кН∙м |
q, кН∙м |
l, м |
α, град |
C1.18 |
8 |
- |
3 |
2 |
1 |
45° |
|
C1.18 |
Теоретическая механика 2 |
300р. |
|
14772 |
Теоретическая механика |

Определить период малых свободных колебаний астатического маятника. Маятник состоит из жёсткого стержня длиной l, несущего на конце шарик массой m, зажатый между двумя горизонтальными пружинами жёсткости с . Массой стержня и трением в оси O пренебречь; пружины в положении равновесия считать ненапряжёнными. Найти условие устойчивости вертикального равновесного положения маятника.
|
Д9.14 |
Теоретическая механика 2 |
300р. |
|
6493 |
Теоретическая механика |

ПРОСТРАНСТВЕННАЯ СИСТЕМА СИЛ
Изогнутая под прямыми углами пространственная рама концом А заделана в неподвижную опору и нагружена равномерно распределенной нагрузкой интенсивностью q или линейное I распределенной нагрузкой с максимальной интенсивностью qmax, парой сил с моментом M и силой P, расположенной в плоскости перпендикулярной участку рамы длиной l4 и образующей угол α с прямой изображенной на рисунке. Определить опорные реакции рамы.
Номер варианта |
Дано: |
P, Н |
M, Н∙м |
q, Н/м |
l1, м |
l2, м |
l3, м |
l4, м |
α, ° |
20 |
5 |
200 |
500 |
300 |
1,8 |
1,2 |
1,4 |
1 |
150 |
|
|
|
300р. |
|
8974 |
Теоретическая механика |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис.
AB = R + r = 35 см = 0,35 м; r = 15 см =0,15 м; AC = 15 см = 0,15 м; ωOA = 2 c-1; ω1 = 2,5 c-1.
|
K1.18. |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|