8510 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. С3.4 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4
Номер варианта |
Номера стержней |
Номера стержней |
Р1, кН |
Р2, кН |
С3.4 |
2, 8, 5 |
3, 4 |
70 |
90 |
|
C3.4_1 |
Теоретическая механика |
300р. |
|
8598 |
Теоретическая механика |
ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Тело начинает вращаться равноускоренно из состояния покоя. В тот момент, когда его угловая скорость численно равна углу поворота, оно делает 120 об/мин. Чему равно угловое ускорение тела и сколько оборотов оно сделало за первые 15 с? Найти линейную скорость точки тела, а также ее нормальное, касательное и полное ускорения в указанный момент времени при условии, что точка находится от оси вращения на расстоянии 0.4 м.
|
K4.20 |
Теоретическая механика 2 |
300р. |
|
11156 |
Теоретическая механика |

ТРЕНИЕ СКОЛЬЖЕНИЯ И ТРЕНИЕ КАЧЕНИЯ
Расчетные схемы даны на рис. С8.19. Определить наибольший вес Qmax груза A, при котором возможно равновесие однородной балки ВС весом P. Коэффициент трения между балкой BC и втулкой B равен f; трение во втулке C не учитывать. Угол наклона балки к горизонту равен α; BD=DC.
|
C8.19 |
Теоретическая механика 2 |
300р. |
|
8530 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.1.
|
C4.1_1 |
Теоретическая механика |
300р. |
|
11092 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунке.
|
C7.7 |
Теоретическая механика 2 |
300р. |
|
8452 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции. Схемы конструкций указаны на рисунке С1.6, исходные данные приведены в таблице.
Номер варианта |
P, кН |
G, кН |
M, кНм |
q, кН/м |
l, м |
α, град. |
C1.6 |
6 |
9 |
3 |
5 |
2 |
60° |
|
C1.6 |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|
11028 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. C5.15 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4
Номер варианта |
Номера стержней |
Номера стержней |
Р1, кН |
Р2, кН |
C5.15 |
2, 11, 4 |
6, 7 |
90 |
140 |
|
C5.15 |
Теоретическая механика 2 |
300р. |
|
14812 |
Теоретическая механика |

Груз D массой m, получив в точке A начальную скорость v0, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис.3.1, табл. 3.2).
На участке АВ на груз кроме силы тяжести действуют постоянная сила Q (ее направление показано на рисунках).
В точке B груз, не изменяя своей скорости, переходит на участок BC трубы, где на него кроме силы тяжести действует переменная сила F, проекция которой Fx на ось х задана в таблице.
Считая груз материальной точкой и зная время t1 движения груза от точки A до точки B, найти скорость груза на участке BC через t2 = 2 сек. после выхода из точки B. Трением груза о трубу пренебречь.
Вариант |
m, кг |
v0, м/c |
Q, Н |
t1, с |
Fx, Н |
8 |
4,8 |
10 |
10 |
1 |
3t2 |
|
Д1-8 |
Методичка по термеху. Нижний Новгород. 2019 год |
300р. |
|
8928 |
Теоретическая механика |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис.
AB = R = 10 см; r = 15 см; R = 25 см; vA = 25 см/с.
|
K1.17. |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|
5042 |
Теоретическая механика |

В кулисном механизме при качании кулисы ОА вокруг оси о ползун В, перемещаясь вдоль кулисы, приводит в движение стержень ВС . Определить скорость движения ползуна В относительно кулисы в функции её угловой скорости ω и угла поворота φ.
|
K7.8 |
Теоретическая механика 2 |
300р. |
|
8380 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.
Номер варианта |
х = х(t), cм |
у = у(t), см |
Время t1, с |
K1.17 |
4∙cos(2πt) |
6∙sin(2πt) |
1/3 |
|
K1.17_1 |
Теоретическая механика |
300р. |
|
10964 |
Теоретическая механика |

СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.5, исходные данные приведены в табл. 1.
Номер варианта |
Р, кН |
G, кН |
M, кН∙м |
q, кН∙м |
l, м |
α, град |
C1.5 |
10 |
8 |
5 |
2 |
2 |
30° |
|
C1.5 |
Теоретическая механика 2 |
300р. |
|
5121 |
Теоретическая механика |
ПРИНЦИП ДАЛАМБЕРА
Ось колеса A массой m = 300 кг, радиусом r = 0,5 м движется с постоянной скоростью VА = 20 м/с. Центр тяжести С колеса смещен от его оси А на расстояние АС = h = 0,02 м. Определить давление колеса на рельс, когда его центр тяжести занимает наинизшее положение. Колесо катится без скольжения.
|
Д6.15 |
Теоретическая механика 2 |
300р. |
|
10900 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20. Кронштейн ABC, весом которого пренебрегаем, испытывает действие груза весом G, пары сил с моментом М и силы P. Определить реакции заделки.
G = 3 кН; Р = 8 кН; М = 14 кН∙м; а = 2 м; α = 30°.
|
C3.13. |
Теоретическая механика 2 |
300р. |
|
5070 |
Теоретическая механика |
ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ
Дано значение момента M. Найти значение силы Q.
|
Д8.6 |
Теоретическая механика 2 |
300р. |
|
14212 |
Теоретическая механика |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис.
AB = R = 20 см = 0,20 м; r = 10 см = 0,10 м; AC = 35 см = 0,35 м; vA = 45 см/с = 0,45 м/c.
|
K6.8 |
Теоретическая механика 2 |
300р. |
|
14614 |
Теоретическая механика |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис.
OA = 25 см = 0,25 м; AB = 45 см = 0,45 м; AC = 22,5 см = 0,225 м; ωOA = 3 c-1; OB1 = 40 см.
|
K6.20 |
Теоретическая механика 2 |
300р. |
|
14148 |
Теоретическая механика |

ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ. ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ
Груз 1 массой m1, опускаясь вниз по призме, приводит в движение посредством нити, переброшенной через невесомый блок, груз 2 массой m2. Определить давление призмы на вертикальный выступ пола
|
Д7.13 |
Теоретическая механика 2 |
300р. |
|
11220 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.
№ варианта |
х = х(t), cм |
у = у(t), см |
Время t1, с |
К1.11 |
3t |
5 - 3t2 |
2 |
|
K1.11 |
Теоретическая механика 2 |
300р. |
|
8236 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции. Схемы конструкций указаны на рисунке С1.15, исходные данные приведены в таблице.
Номер варианта |
P, кН |
G, кН |
M, кНм |
q, кН/м |
l, м |
α, град |
C1.5 |
20 |
12 |
3 |
4 |
1 |
60° |
|
C1.5 |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|
10854 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.9, -исходные данные приведены в таблице 2.
Номер варианта |
Р1, кН |
P2, кН |
P3, кН |
M кН∙м |
a, м |
b, м |
α, град |
С-2.9. |
5 |
6 |
4 |
2 |
1.0 |
1.0 |
60° |
|
C2.9. |
Теоретическая механика 2 |
300р. |
|
12576 |
Электротехника |

РАСЧЁТ РАЗВЕТВЛЕННОЙ МАГНИТНОЙ ЦЕПИ ПРИ ПОСТОЯННЫХ ТОКАХ
Для магнитной цепи (рис. 5) выполнить следующее:
1. Начертить схему замещения магнитной цепи, указав на ней направления магнитных потоков и магнитодвижущих сил (МДС);
2. Составить для магнитной цепи уравнения по законам Кирхгофа;
3. Определить магнитные потоки в стержнях и значение магнитной индукции в воздушном зазоре.
Размеры магнитопровода на рис. 5 даны в мм. Магнитопровод выполнен из электротехнической стали, кривая намагничивания которой представлена в табл. 2. Величины токов и число витков обмотки для каждого варианта даны в табл. 3.
Таблица 2
В, Тл |
0 |
0,5 |
0,7 |
0,9 |
1,0 |
1,1 |
1,2 |
1,3 |
1,4 |
1,6 |
1,7 |
1,75 |
Н, А/м |
0 |
100 |
140 |
200 |
250 |
350 |
500 |
700 |
1000 |
1800 |
2500 |
3000 |
Таблица 3
Предпоследняя цифра студента |
I1, А |
w1, витков |
w2, витков |
I2, А |
1 |
30 |
200 |
30 |
300 |
|
211 |
СамГУПС Саратов. Общая электротехника и электроника. 2018 год |
300р. |
|
8690 |
Теоретическая механика |

ПРИНЦИП ДАЛАМБЕРА
Два тонких однородных стержня AB и DE одинаковой массы m скреплены невесомым стержнем C1C2. Стержень жёстко соединён с вертикальной осью O1O2, с которой он образует угол α. Стержни вращаются вокруг оси O1O2 с постоянной угловой скоростью ω. Даны размеры: O1O = OO2 = b; C1O = OC2 = l; AC1 = C1B; DC2 = C2E. Определить реакции подпятника и подшипника.
|
Д6.4 |
Теоретическая механика 2 |
300р. |
|
11238 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х=х(t), у=у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.
№ варианта |
х = х(t), cм |
у = у(t), см |
Время t1, с |
К1.20 |
4t - 5t2 |
2t |
2 |
|
K1.20 |
Теоретическая механика 2 |
300р. |
|
14566 |
Теоретическая механика |

ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3
№ варианта |
Уравнение движения груза 1 S = S(t), см |
R2 |
r2 |
R3 |
r3 |
t1 |
К3.4 |
160t2 |
50 |
30 |
70 |
40 |
2 |
|
K3.4 |
Теоретическая механика 2 |
300р. |
|
8616 |
Теоретическая механика |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
На рис. К3.16 показана схема механизма, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Ползун в данном положении механизма имеет скорость VB = 4 м/с и ускорение aB = 6 м/с2. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек А, Д, Е, угловые скорости указанных шатунов и кривошипа О1А, а также ускорение точки А.
|
K5.16 |
Теоретическая механика 2 |
300р. |
|
14100 |
Теоретическая механика |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис.
OA = 30 см = 0,30 м; AB = 30 см = 0,30 м; AC = 20 см = 0,20 м; ωOA = 4 c-1.
|
K1.10 |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|
11174 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ЦЕНТРА ТЯЖЕСТИ ОДНОРОДНОГО ТЕЛА
Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.8. Размеры ферм даны в метрах, остальных тел - в сантиметрах.
|
C9.8 |
Теоретическая механика 2 |
300р. |
|
8548 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.14.
|
C4.14_1 |
Теоретическая механика |
300р. |
|
11110 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ.Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунке.
|
C7.16 |
Теоретическая механика 2 |
300р. |
|
8480 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. С1.7, исходные данные приведены в табл. 1.
Номер варианта |
P, кН |
G, кН |
M, кНм |
q, кН/м |
l, м |
α, град |
С1.7 |
12 |
6 |
8 |
3 |
1 |
30° |
|
C1.7 |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|
11046 |
Теоретическая механика |

Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.
|
C6.4 |
Теоретическая механика 2 |
300р. |
|
10982 |
Теоретическая механика |

СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.14, исходные данные приведены в табл. 1.
Номер варианта |
Р, кН |
G, кН |
M, кН∙м |
q, кН∙м |
l, м |
α, град |
C1.14 |
10 |
- |
4 |
2 |
1 |
45° |
|
C1.14 |
Теоретическая механика 2 |
300р. |
|
6485 |
Теоретическая механика |

ПРИМЕНЕНИЕ УРАВНЕНИЙ ЛАГРАНЖА ВТОРОГО РОДА К ИЗУЧЕНИЮ ДВИЖЕНИЯ МЕХАНИЧЕСКОЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ
Тело D массой m1 = 30 кг вращается вокруг вертикальной оси O1z под действием пары сил с моментом Mz = 15∙t2 - 10∙t3. Варианты расчетных схем изображены на рисунке. При этом по желобу АВ тела D под действием внутренней силы F = 1,5(t2 + 3), направленной по касательной к желобу (управляющее воздействие), движется материальная точка М массой m2 = 5 кг. Согласно закону равенства действия и противодействия с такой же по величине силой, но направленной в противоположную сторону, точка М действует на тело D.
Используя уравнения Лагранжа второго рода составить дифференциальные уравнения движения механической системы в обобщенных координатах. Сопротивлением движению пренебречь.
Номер варианта |
m1, кг |
m2, кг |
a, м |
b, м |
R, м |
α, град |
Mz = Mz(t), Н∙м |
F = F(t), Н |
30 |
30 |
5 |
3 |
1 |
- |
- |
15∙t2 - 10∙t3 |
1.5∙(t2 + 3) |
|
|
|
300р. |
|
14300 |
Теоретическая механика |

Для заданного механизма дано: R = 0,3 м, АВ = 1 м, $\varphi_1(t)=\frac{\sqrt{3}}{6}(2t-t^2)+t$ рад.
Колесо катится без проскальзывания. Полагая, что в этот момент времени механизм занимает положение, указанное на рисунке, определить:
1) модуль скорости точки А;
2) модуль скорости точки B;
3) модуль угловой скорости звена AB;
4) направление вращения звена АB.
|
Д7.21 |
Теоретическая механика 2 |
300р. |
|
8332 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.2, -исходные данные приведены в таблице 2.
Номер варианта |
Р1, кН |
P2, кН |
M, кН∙м |
a, м |
b, м |
l, м |
α, град |
С2.2 |
4 |
4 |
5 |
1,8 |
1,6 |
1.2 |
30° |
|
C2.2 |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|
13812 |
Теоретическая механика |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис.
OA = 40 см = 0,40 м; AB = 30 см = 0,30 м; AC = 15 см = 0,15 м; ωOA = 2 c-1.
|
K 6-1 |
Теоретическая механика |
300р. |
|
10918 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. C4.2, исходные данные указаны в таблице 3.
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
С4.2 |
6 |
4 |
2 |
1.3 |
2.5 |
1 |
60° |
|
C4.2 |
Теоретическая механика 2 |
300р. |
|
8418 |
Электроника |

Необходимо рассчитать в зависимости от вариантов задания (табл. 1) следующие параметры усилительного каскада:
а) координаты точки покоя Uкэ.о, Iк.о, ток базы Iб.о, эквивалентное напряжение Eэкв, сопротивления резисторов R1, R2, Rэ при номинальном значении коэффициента β и построить трафик (рис. 2) по рассчитанным численным значениям;
б) исходя из заданной нижней частоты fн и коэффициента усиления Ки.о, рассчитать по формулам сопротивление обратной связи Roc, коэффициент- усиления в области (НЧ) Ku.н и емкости конденсаторов C1, C2, Cэ.
Вариант |
h21э, (β) |
h22э, мСм |
Eк, В |
Rк, кОм |
Rн, кОм |
Кu,o |
fн, Гц |
12 |
47 |
0,05 |
16 |
10 |
6 |
13 |
57 |
|
|
|
300р. |
|
11000 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. C5.1 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4
Номер варианта |
Номера стержней |
Номера стержней |
Р1, кН |
Р2, кН |
C5.1 |
2, 9, 4 |
1, 6 |
90 |
40 |
|
C5.1 |
Теоретическая механика 2 |
300р. |
|
8350 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.11 -исходные данные приведены в таблице 2.
Таблица 2
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
C2.11 |
8 |
7 |
9 |
0,8 |
1,2 |
- |
30° |
|
C2.11 |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|
10936 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. C4.11, исходные данные указаны в таблице 3.
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
C4.11 |
8 |
4 |
3 |
1.8 |
2.5 |
0.8 |
30° |
|
C4.11 |
Теоретическая механика 2 |
300р. |
|
5106 |
Теоретическая механика |

К валу электромотора, вращающемуся согласно уравнению $\varphi = \omega t$, прикреплен под прямым углом стержень ОА длиной l. Электромотор, установленный без креплений, совершает гармонические колебания по закону $x = b \cos \omega *t. Определить абсолютную скорость точки А стержня в момент времени t_1 = \frac{\pi}{2\omega}$.
|
K7.10 |
Теоретическая механика 2 |
300р. |
|
10872 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.19, -исходные данные приведены в таблице 2.
Номер варианта |
Р1, кН |
P2, кН |
P3, кН |
M кН∙м |
a, м |
b, м |
α, град |
С-2.19. |
4 |
4 |
4 |
5 |
1.2 |
0.9 |
0° |
|
C2.19. |
Теоретическая механика 2 |
300р. |
|
11256 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.
№ варианта |
S = S(t), cм |
R, см |
Время t1, с |
К2.9 |
4t2 + 3 |
2t |
1 |
|
K2.9 |
Теоретическая механика 2 |
300р. |
|
15040 |
Электростатика |

На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностны плотностями σ1 и σ2. Требуется:
1) используя теорему Остроградского-Гаусса, найти зависимость E(r) напряженности электрического поля от расстояния для трёх областей: I, II и III. Принять σ1 = -8σ2, σ2 = 2σ;
2) вычислить напряжённость E в точке, удалённой от центра на расстояние r, и указать направление вектора E. Принять σ = 40 нКл/м2, r = 3,5R;
3) построить трафик E(r)
|
|
|
300р. |
|
14584 |
Теоретическая механика |

ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3
№ варианта |
Уравнение движения груза 1 S = S(t), см |
R2 |
r2 |
R3 |
r3 |
t1 |
К3.13 |
160t2 |
50 |
30 |
70 |
40 |
2 |
|
K3.13 |
Теоретическая механика 2 |
300р. |
|
8634 |
Теоретическая механика |

Пластинка АВСД вращается вокруг оси OZ с угловой скоростью ω = 4t2 с-1. По ее стороне ВС в направлении от В к С движется точка М с постоянной скоростью 8 м/с . Определить абсолютную скорость точки М в момент времени t1 = 2 c, если длина АВ = 0,6 м.
|
K7.14 |
Теоретическая механика 2 |
300р. |
|
11192 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ЦЕНТРА ТЯЖЕСТИ ОДНОРОДНОГО ТЕЛА
Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.17. Размеры ферм даны в метрах, остальных тел - в сантиметрах.
|
C9.17 |
Теоретическая механика 2 |
300р. |
|
8566 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = x(t), у = y(t). найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.
Номер варианта |
х = х(t), cм |
у = у(t), см |
Время t1, с |
K1.12 |
2∙sin(πt/6) - 4 |
3∙cos(πt/6) |
2 |
|
K1.12_1 |
Теоретическая механика |
300р. |
|