Онлайн-магазин готовых решений

Вы можете мгновенно получить на свой е-мэйл решение любой из этих задач, оплатив её стоимость через онлайн-сервис на нашем сайте. Подробные инструкции по оплате можно увидеть, кликнув на ссылку номера задачи.
Если найти нужную задачу не удаётся, Вы можете оформить Заказ.

Как использовать поиск
Всего задач, соответствующих запросу: 6946
Номер Предмет Условие задачи Задачник Ценасортировать по убыванию
8968 Теоретическая механика




ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис.
OA = 30 см = 0,30 м; AB = 30 см = 0,30 м; AC = 15 см = 0,15 м; ωOA = 4 c-1.

K6.18 Теоретическая механика 2 300р.
11150 Теоретическая механика




ТРЕНИЕ СКОЛЬЖЕНИЯ И ТРЕНИЕ КАЧЕНИЯ
Расчетные схемы даны на рис. С8.16. Каток A радиуса r и весом P лежит на наклонной плоскости с утлом α. Определить наименьший вес Qmin груза B, при котором возможно равновесие, если коэффициент трения качения катка равен δ.

C8.16 Теоретическая механика 2 300р.
9754 Электротехника




ЗАДАНИЕ № 3 «РАСЧЕТ ЧЕТЫРЁХПОЛЮСНИКА»
На рис. 5.1 представлена Г-образная эквивалентная схема четырёхполюсника (ЧП), где Z1 – продольное сопротивление, Z2 – поперечное сопротивление.
Выполнить следующее:
1) начертить исходную схему ЧП;
2) свести полученную схему ЧП к Г-образной эквивалентной схеме ЧП, заменив трёхэлементные схемы замещения продольного и поперечного сопротивлений двухэлементными схемами: Z1 = R1 + jX1, Z2 = R2 + jX2. Дальнейший расчёт вести для эквивалентной схемы;
3) определить коэффициенты A – формы записи уравнений ЧП;
4) определить сопротивления холостого хода и короткого замыкания со стороны первичных (11’) и вторичных выводов (22’):
а) через A – параметры;
б) непосредственно через продольное и поперечное сопротивления для режимов холостого хода и короткого замыкания на соответствующих выводах;
5) определить характеристические сопротивления для выводов 11’ и 22’ и постоянную передачи ЧП;
6) определить комплексный коэффициент передачи по напряжению и передаточную функцию ЧП;
Таблица 5.1. Параметры элементов продольного и поперечного сопротивлений ЧП

Номер строки R, Ом L, мГ C, мкФ f0, кГц
2 30 5 5 30
235.3 300р.
8522 Теоретическая механика




ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. С3.16 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4

Номер варианта Номера стержней Номера стержней Р1, кН Р2, кН
С3.16 2, 10, 5 3, 4 170 130
C3.16_1 Теоретическая механика 300р.
5038 Теоретическая механика

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.8 4∙cos(πt/2) 3∙sin(πt/2) 1,5
K1.8_1 Теоретическая механика 300р.
13990 Теоретическая механика




По стержню AB движется ползун C массой m с постоянной скоростью u относительно стержня. Момент инерции вала со стержнем относительно оси вращения Oz равен Jz. Определить закон изменения угловой скорости вала, если его начальная угловая скорость равна ω0, а ползун, принимаемый за материальную точку, находится при t = 0 на расстоянии b от оси вращения.

Д5.13 Теоретическая механика 2 300р.
11086 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунке.

C7.4 Теоретическая механика 2 300р.
14412 Теоретическая механика




Груз B массой m, приводит в движение цилиндрический каток A массой m и радиусом r двигается при помощи нити, намотанной на каток. Определить ускорение груза B, если каток катится без скольжения, а коэффициент трения качения равен δ. Массой блока C пренебречь

Д7.3 Теоретическая механика 2 300р.
8444 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.5, -исходные данные приведены в таблице 2.

Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
С-2.5 6 5 6 0,8 1,8 - 60°
C2.5 МИИТ. Теоретическая механика. 2012 год 300р.
14806 Теоретическая механика




Груз D массой m, получив в точке A начальную скорость v0, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис.3.1, табл. 3.2).
На участке АВ на груз кроме силы тяжести действуют постоянная сила Q (ее направление показано на рисунках).
В точке B груз, не изменяя своей скорости, переходит на участок BC трубы, где на него кроме силы тяжести действует переменная сила F, проекция которой Fx на ось х задана в таблице.
Считая груз материальной точкой и зная время t1 движения груза от точки A до точки B, найти скорость груза на участке BC через t2 = 2 сек. после выхода из точки B. Трением груза о трубу пренебречь.

Вариант m, кг v0, м/c Q, Н t1, с Fx, Н
5 4,5 22 9 3 t3 + 2t
Д1-5 Методичка по термеху. Нижний Новгород. 2019 год 300р.
11022 Теоретическая механика




ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. C5.12 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4

Номер варианта Номера стержней Номера стержней Р1, кН Р2, кН
C5.12 1, 8, 6 3, 4 150 130
C5.12 Теоретическая механика 2 300р.
11872 Механика




Определить ускорения тел и силу натяжения нити (рис.2.1). Массы тел равны m1 = 4 кг, m2 = 3 кг, m3 = 2 кг, коэффициент трения μ = 0,25, угол α = 30°, F = 50 Н. Постройте график зависимости ускорения от угла, определите критический угол, при котором движение системы будет равномерным, какие при этом будут силы натяжения нитей.

300р.
10958 Теоретическая механика




СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.2, исходные данные приведены в табл. 1.

Номер варианта Р, кН G, кН M, кН∙м q, кН∙м l, м α, град
C1.2 10 6 5 2 1,5 45°
C1.2 Теоретическая механика 2 300р.
5118 Теоретическая механика




Тело в виде полуцилиндра скользит по горизонтальной плоскости со скоростью v = 0,2 м/с, поворачивая шарнирно закрепленный в точке А стержень АВ. Определить относительную скорость точки касания М стержня АВ, если угол α = 30°.

K7.15 Теоретическая механика 2 300р.
10894 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20. Рычаг ABC с осью вращения в точке B, опирающийся в точке D на гладкий цилиндр, испытывает действие груза Q, распределенной нагрузки интенсивности q и пары сил с моментом M. Пренебрегая весом рычага, найти реакции опор, если АВ = 2ВС = 2а; АД = 0,5а. Q = 10 кH; M = 5 кН∙м; a = 2,5 м; q = 2 кH/м.

C3.10. Теоретическая механика 2 300р.
5066 Теоретическая механика




Стержень ВС кулисного механизма движется со скоростью v = 1 м/с. Для указанного положения механизма определить угловую скорость кулисы ОА, если расстояние ОВ = 0,7 м

K7.6 Теоретическая механика 2 300р.
11278 Теоретическая механика

КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.

№ варианта S = S(t), cм R, см Время t1, с
К2.19 2sin(πt/4) - 4 3cos(π/4) 1
K2.19 Теоретическая механика 2 300р.
4836 Теоретическая механика

Определить скорость и ускорение ползуна B, а также угловую скорость и угловое ускорение звена AB, если vA = 79 м/с; aA = 4 м/с2; |AB| = l = 1 м; α = 5°; β = 75°.

K2.8 Теоретическая механика 300р.
14608 Теоретическая механика




ПЛОСКО-ПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Для заданного положения механизма найти скорости точек В и С, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис. К6.1-К6.20.
AB = 60 см; ωкол = 3 c-1; BC = 120 см; r = 30 см.

K6.12 Теоретическая механика 2 300р.
8664 Теоретическая механика

ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ
Маховое колесо радиуса r и веса P вращается вокруг своей оси с угловой скоростью ω. Колесо останавливают с помощью тормозной колодки силой R, линия действия которой проходит через ось маховика перпендикулярно этой оси. Найти коэффициент трения между тормозной колодкой и ободом колеса, если оно до остановки сделано N оборотов. Трением в подшипниках пренебречь.

Д3.2 Теоретическая механика 2 300р.
11214 Теоретическая механика

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.8 4cos(πt/2) 3sin(πt/2) 1,5
K1.8 Теоретическая механика 2 300р.
8128 Электротехника




ЗАДАНИЕ № 2 «РАСЧЕТ ТРЁХФАЗНОЙ ЦЕПИ»
3.1. Внутри здания сети внутреннего электроснабжения выполнены по схеме "звезда" с нейтральным проводом. Отдельные помещения подключены к разным фазам трехфазного источника электроэнергии с линейным напряжением Uл = 380 В и частотой тока f = 50 Гц. На основании данных табл. 3.1 - 3.2 определить для своего варианта (последняя цифра трехзначного варианта из предыдущего задания – номер строки в табл. 3.2, предпоследняя цифра – номер строки в табл. 3.1) нагрузку каждой фазы, причем электропотребители в фазе включаются параллельно. Считая лампу накачивания (ЛН) активной нагрузкой, калорифер (К), электродвигатель (ЭД) и трансформатор (ТР) активно-индуктивной нагрузкой, начертить электрическую схему замещения рассчитываемой трехфазной цепи для своего варианта.
3.2. Выполнить анализ электрического состояния полученной в п. 3.1 схемы при наличии нейтрального провода:
1) определить активное, реактивное и полное сопротивления каждого электропотребителя;
2) рассчитать токи, протекающие через каждый электропотребитель (токи в параллельных ветвях каждой фазы);
3) определить для каждой фазы полное сопротивление, активную, реактивную и полную мощность, коэффициент мощности;
4) рассчитать линейные токи и ток в нейтральном проводе;
5) определить для всей трехфазной нагрузки активную PН, реактивную QH и полную SH мощности, коэффициент мощности cos φH и составить баланс мощностей;
6) построить в масштабе совмещенную векторную диаграмму напряжений и токов.
Таблица 3.1. Вид нагрузки в фазах

Номер строки Электроприемники в фазах
Фаза A Фаза B Фаза C
3 ЛН, ТР, К К ЛН, ЭД

Таблица 3.2. Параметры нагрузки

Номер строки ЛН К ТР Эд
PЛН PК cos φК SТР cos φТР PЭД КПД cos φЭД
3 150 1500 0,96 1000 0,75 400 0,78 0,87

3.3. Примечания:
1. Для всех токов и напряжений определить действующее значение и начальную фазу.
2. На схеме замещения изображать активную нагрузку в виде резистора, активно-индуктивную нагрузку в виде последовательного соединения резистора и идеальной индуктивной катушки.
3. Баланс мощностей должен сойтись с погрешностью менее 1%.

300р.
12486 Теоретическая механика




Для заданного механизма найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки.
AB = 15 см; r = 15 см ; ωOA = 4 c-1; ω1 = 3 c-1.

K1.19 МИИТ. Теоретическая механика. 2012 год 300р.
10848 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.6, -исходные данные приведены в таблице 2.

Номер варианта Р1, кН P2, кН P3, кН M, кН∙м a, м b, м α, град
С-2.6. 7 9 0 5 1.0 1.0 30°
C2.6. Теоретическая механика 2 300р.
8684 Теоретическая механика

ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ
Пружина имеет в ненапряжённом состоянии длину 20 см. Сила, необходимая для изменения её длины на 0,01 м, равна 1,96 Н. С какой скоростью v вылетит из трубки шарик массой 0,03 кг, если пружина была сжата до длины 0,1 м. Трубка с пружиной расположена горизонтально.

Д3.20 Теоретическая механика 2 300р.
11232 Теоретическая механика

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.17 4cos(2πt) 6sin(2πt) 1/3
K1.17 Теоретическая механика 2 300р.
14560 Теоретическая механика




ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3

№ варианта Уравнение движения груза 1 S = S(t), см R2 r2 R3 r3 t1
К3.1 160t2 50 30 70 40 2
K3.1 Теоретическая механика 2 300р.
8610 Теоретическая механика




ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
На рис. К3.12 показана схема механизма, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Ползун в данном положении механизма имеет скорость VB = 4 м/с и ускорение aB = 6 м/с2. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек А, Д, Е, угловые скорости указанных шатунов и кривошипа О1А, а также ускорение точки А.

K5.12 Теоретическая механика 2 300р.
11168 Теоретическая механика




ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ЦЕНТРА ТЯЖЕСТИ ОДНОРОДНОГО ТЕЛА
Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.5. Размеры ферм даны в метрах, остальных тел - в сантиметрах.

C9.5 Теоретическая механика 2 300р.
8542 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.11.

C4.11_1 Теоретическая механика 300р.
11104 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунке.

C7.13 Теоретическая механика 2 300р.
9708 Теоретическая механика




СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ
Прямоугольная пластина (рис. К4.3) вращается вокруг неподвижной оси с постоянной угловой скоростью ω = -3 с-1 заданной в табл. К3 (при знаке минус направление ω противоположно показанному на рисунке).
Ось вращения на рис K4.3 ось вращения OO1 лежит в плоскости пластины (пластина вращается в пространстве)

№ усл ω, с-1 Рис. 0-5
b, см S = AM = f(t)
0 -2 16 60∙(t4 - t2) + 56

По пластине вдоль прямой BD (рис K4.3) движется точка M. Закон ее относительного движения, выражаемый уравнением $s = AM = 60(t^4 - t^2) + 56$ (s — в сантиметрах, t — в секундах), задан в табл. K4 отдельно для рис. K4.3. На всех рисунках точка M показана в положении, при котором s = AM > 0 (при s > 0 точка М находится по другую сторону от точки А).
Определить абсолютную скорость и абсолютное ускорение точки M в момент времени t1 = 1 с.

300р.
10642 Теоретическая механика




ПЛОСКАЯ ПРОИЗВОЛЬНАЯ СИСТЕМА СИЛ
Определение реакций опор твердого тела
Найти реакции опор конструкции. Размеры (рис.) в схемах конструкций представлены в метрах. Нагрузка указана табл.2.

Вариант G P M, кН∙м q, кН∙м α, град
кН
2 12 8 10 - 60
300р.
8474 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 1.12, исходные данные приведены в табл. 1.

Номер варианта P, кН G, кН M, кНм q, кН/м l, м α, град
C1.2 15 12 8 1 1,5 60°
C1.2 МИИТ. Теоретическая механика. 2012 год 300р.
11040 Теоретическая механика




Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.

C6.1 Теоретическая механика 2 300р.
14758 Теоретическая механика




По призме C массой m = 7 кг могут двигаться тележки A и B массами m1 = 1 кг и m2 = 2 кг соответственно. Тележки связаны невесомой нитью, переброшенной через неподвижный блок Д. В начальный момент система находится в покое, затем тележка A начинает двигаться относительно призмы влево по закону Sотн = 5t2 (м). Определить ускорение призмы.

Д9.7 Теоретическая механика 2 300р.
10976 Теоретическая механика




СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.11, исходные данные приведены в табл. 1.

Номер варианта Р, кН G, кН M, кН∙м q, кН∙м l, м α, град
C1.11 10 8 6 2 2 30°
C1.11 Теоретическая механика 2 300р.
6479 Теоретическая механика




По заданным уравнениям относительного движения точки S = S(t) по переносящему телу и угловой скорости ω=ω(t) этого тела приведенным в табл. 2, найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1. Варианты расчетных схем изображены на рисунке.

Номер варианта № Дано ω(t), рад/с S(t), см R, см a, см t, сек
30 2 -π∙t π∙(3+cos(2π∙t)) 10 - 1/3

Точка M пластины движется по дуге окружности радиуса R = 0,10 м вращается вокруг стороны квадрата AB с угловой скоростью ω = 3∙t (рад/с). По дуге окружности точка М двигается согласно уравнению AM = S(t) = π∙(3+cos(2∙π∙t)) (см). Определить абсолютные скорость и ускорение точки в момент времени t1 = 1/3 (с).

300р.
11822 Теоретическая механика




ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Для заданного положения механизма найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки.
Дано: AO = 30 см, AB = 40 см, AC = 20 см, ωOA = 2 c-1, O1B = 30 см.
Найти: vA; vB; vC; ωAB = ?

300р.
5128 Теоретическая механика

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Точка на ободе маховика в период разгона движется по закону φ = 0,8(t3 + 3t2), где угол φ задан в радианах, а время t - в секундах. Радиус маховика R = 1,6 м. Найти угловую скорость и угловое ускорение маховика, а также нормальное, касательное и полное ускорение точки обода маховика в тот момент времени, когда ее линейная скорость составляет v = 36 м/с. Сколько оборотов совершил маховик к этому моменту времени?

K4.18 Теоретическая механика 2 300р.
10912 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20.
Определить реакции опор A и B балки ABC, испытывающей действие груза весом P, пары сил с моментом M и распределенной нагрузки интенсивностью
q =3 кН/м; P = 15 кН; M = 10 кН∙м; l1 = 4 м; l2 = 2 м, α=30°

C3.19. Теоретическая механика 2 300р.
5092 Теоретическая механика

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Маховое колесо радиуса R = 0.5 м имело начальную скорость ω0 = 30π с-1. Определить закон вращательного движения колеса, считая его равнозамедленным, а также касательное, нормальное и полное ускорение точки, лежащей на его ободе, если линейная скорость этой точки через 2 с после начала движения v = 30 м/с и начальный угол φ0 = 0.

K4.9 Теоретическая механика 2 300р.
8344 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.8 -исходные данные приведены в таблице 2.

Таблица 2
Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
С2.8 2 5 12 1,8 1,8 - 60°
C2.8 МИИТ. Теоретическая механика. 2012 год 300р.
14712 Теоретическая механика




На тележке массой М подвешен математический маятник, который совершает колебания по закону φ = φ0 = const. Длина нити маятника равна l, масса точечного груза - m. Найти закон движения тележки, если в начальный момент тележка находилась в покое, а маятник был отведён от вертикали на угол φ0 и отпущен без начальной скорости.

Д4.16 Теоретическая механика 2 300р.
10930 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. C4.8, исходные данные указаны в таблице 3.

Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
C4.8 4 4 3 3 2.5 1.5 30°
C4.8 Теоретическая механика 2 300р.
5103 Теоретическая механика

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.

№ варианта х = х(t), cм y = у(t), см Время t1, с
К1.10 $3\sin\frac{\pi t}{2}$ $4\cos\frac{\pi t}{2}$ 0,5
K1.10_1 Теоретическая механика 300р.
10866 Теоретическая механика




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.15, -исходные данные приведены в таблице 2.

Номер варианта Р1, кН P2, кН P3, кН M кН∙м a, м b, м α, град
С-2.15. 20 20 0 6 3 4 60°
C2.15. Теоретическая механика 2 300р.
11250 Теоретическая механика

КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.

№ варианта S = S(t), cм R, см Время t1, с
К2.6 5sin(πt/3) 3cos(πt/3) - 2 2
K2.6 Теоретическая механика 2 300р.
3285 Теоретическая механика

к2ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Угловая скорость винта совершившего посадку самолета, равная в данный момент ω0 = 80π с-1, через t1 = 10 секунд после выключения мотора становится равной ω = 40π с-1. Считая вращение винта равнозамедленным, определить скорость и ускорение точки винта в момент t2 = 12 с, если расстояние до этой точки от оси вращения равно 1,5 м.

K4.7 Теоретическая механика 2 300р.
14578 Теоретическая механика




ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3

№ варианта Уравнение движения груза 1 S = S(t), см R2 r2 R3 r3 t1
К3.10 160t2 50 30 70 40 2
K3.10 Теоретическая механика 2 300р.

Страницы