8968 |
Теоретическая механика |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис.
OA = 30 см = 0,30 м; AB = 30 см = 0,30 м; AC = 15 см = 0,15 м; ωOA = 4 c-1.
|
K6.18 |
Теоретическая механика 2 |
300р. |
|
11150 |
Теоретическая механика |

ТРЕНИЕ СКОЛЬЖЕНИЯ И ТРЕНИЕ КАЧЕНИЯ
Расчетные схемы даны на рис. С8.16. Каток A радиуса r и весом P лежит на наклонной плоскости с утлом α. Определить наименьший вес Qmin груза B, при котором возможно равновесие, если коэффициент трения качения катка равен δ.
|
C8.16 |
Теоретическая механика 2 |
300р. |
|
9754 |
Электротехника |

ЗАДАНИЕ № 3 «РАСЧЕТ ЧЕТЫРЁХПОЛЮСНИКА»
На рис. 5.1 представлена Г-образная эквивалентная схема четырёхполюсника (ЧП), где Z1 – продольное сопротивление, Z2 – поперечное сопротивление.
Выполнить следующее:
1) начертить исходную схему ЧП;
2) свести полученную схему ЧП к Г-образной эквивалентной схеме ЧП, заменив трёхэлементные схемы замещения продольного и поперечного сопротивлений двухэлементными схемами: Z1 = R1 + jX1, Z2 = R2 + jX2. Дальнейший расчёт вести для эквивалентной схемы;
3) определить коэффициенты A – формы записи уравнений ЧП;
4) определить сопротивления холостого хода и короткого замыкания со стороны первичных (11’) и вторичных выводов (22’):
а) через A – параметры;
б) непосредственно через продольное и поперечное сопротивления для режимов холостого хода и короткого замыкания на соответствующих выводах;
5) определить характеристические сопротивления для выводов 11’ и 22’ и постоянную передачи ЧП;
6) определить комплексный коэффициент передачи по напряжению и передаточную функцию ЧП;
Таблица 5.1. Параметры элементов продольного и поперечного сопротивлений ЧП
Номер строки |
R, Ом |
L, мГ |
C, мкФ |
f0, кГц |
2 |
30 |
5 |
5 |
30 |
|
235.3 |
|
300р. |
|
8522 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. С3.16 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4
Номер варианта |
Номера стержней |
Номера стержней |
Р1, кН |
Р2, кН |
С3.16 |
2, 10, 5 |
3, 4 |
170 |
130 |
|
C3.16_1 |
Теоретическая механика |
300р. |
|
5038 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.
№ варианта |
х = х(t), cм |
у = у(t), см |
Время t1, с |
К1.8 |
4∙cos(πt/2) |
3∙sin(πt/2) |
1,5 |
|
K1.8_1 |
Теоретическая механика |
300р. |
|
13990 |
Теоретическая механика |

По стержню AB движется ползун C массой m с постоянной скоростью u относительно стержня. Момент инерции вала со стержнем относительно оси вращения Oz равен Jz. Определить закон изменения угловой скорости вала, если его начальная угловая скорость равна ω0, а ползун, принимаемый за материальную точку, находится при t = 0 на расстоянии b от оси вращения.
|
Д5.13 |
Теоретическая механика 2 |
300р. |
|
11086 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунке.
|
C7.4 |
Теоретическая механика 2 |
300р. |
|
14412 |
Теоретическая механика |

Груз B массой m, приводит в движение цилиндрический каток A массой m и радиусом r двигается при помощи нити, намотанной на каток. Определить ускорение груза B, если каток катится без скольжения, а коэффициент трения качения равен δ. Массой блока C пренебречь
|
Д7.3 |
Теоретическая механика 2 |
300р. |
|
8444 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.5, -исходные данные приведены в таблице 2.
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
С-2.5 |
6 |
5 |
6 |
0,8 |
1,8 |
- |
60° |
|
C2.5 |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|
14806 |
Теоретическая механика |

Груз D массой m, получив в точке A начальную скорость v0, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис.3.1, табл. 3.2).
На участке АВ на груз кроме силы тяжести действуют постоянная сила Q (ее направление показано на рисунках).
В точке B груз, не изменяя своей скорости, переходит на участок BC трубы, где на него кроме силы тяжести действует переменная сила F, проекция которой Fx на ось х задана в таблице.
Считая груз материальной точкой и зная время t1 движения груза от точки A до точки B, найти скорость груза на участке BC через t2 = 2 сек. после выхода из точки B. Трением груза о трубу пренебречь.
Вариант |
m, кг |
v0, м/c |
Q, Н |
t1, с |
Fx, Н |
5 |
4,5 |
22 |
9 |
3 |
t3 + 2t |
|
Д1-5 |
Методичка по термеху. Нижний Новгород. 2019 год |
300р. |
|
11022 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. C5.12 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4
Номер варианта |
Номера стержней |
Номера стержней |
Р1, кН |
Р2, кН |
C5.12 |
1, 8, 6 |
3, 4 |
150 |
130 |
|
C5.12 |
Теоретическая механика 2 |
300р. |
|
11872 |
Механика |

Определить ускорения тел и силу натяжения нити (рис.2.1). Массы тел равны m1 = 4 кг, m2 = 3 кг, m3 = 2 кг, коэффициент трения μ = 0,25, угол α = 30°, F = 50 Н. Постройте график зависимости ускорения от угла, определите критический угол, при котором движение системы будет равномерным, какие при этом будут силы натяжения нитей.
|
|
|
300р. |
|
10958 |
Теоретическая механика |

СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.2, исходные данные приведены в табл. 1.
Номер варианта |
Р, кН |
G, кН |
M, кН∙м |
q, кН∙м |
l, м |
α, град |
C1.2 |
10 |
6 |
5 |
2 |
1,5 |
45° |
|
C1.2 |
Теоретическая механика 2 |
300р. |
|
5118 |
Теоретическая механика |

Тело в виде полуцилиндра скользит по горизонтальной плоскости со скоростью v = 0,2 м/с, поворачивая шарнирно закрепленный в точке А стержень АВ. Определить относительную скорость точки касания М стержня АВ, если угол α = 30°.
|
K7.15 |
Теоретическая механика 2 |
300р. |
|
10894 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20. Рычаг ABC с осью вращения в точке B, опирающийся в точке D на гладкий цилиндр, испытывает действие груза Q, распределенной нагрузки интенсивности q и пары сил с моментом M. Пренебрегая весом рычага, найти реакции опор, если АВ = 2ВС = 2а; АД = 0,5а. Q = 10 кH; M = 5 кН∙м; a = 2,5 м; q = 2 кH/м.
|
C3.10. |
Теоретическая механика 2 |
300р. |
|
5066 |
Теоретическая механика |

Стержень ВС кулисного механизма движется со скоростью v = 1 м/с. Для указанного положения механизма определить угловую скорость кулисы ОА, если расстояние ОВ = 0,7 м
|
K7.6 |
Теоретическая механика 2 |
300р. |
|
11278 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.
№ варианта |
S = S(t), cм |
R, см |
Время t1, с |
К2.19 |
2sin(πt/4) - 4 |
3cos(π/4) |
1 |
|
K2.19 |
Теоретическая механика 2 |
300р. |
|
4836 |
Теоретическая механика |
Определить скорость и ускорение ползуна B, а также угловую скорость и угловое ускорение звена AB, если vA = 79 м/с; aA = 4 м/с2; |AB| = l = 1 м; α = 5°; β = 75°.
|
K2.8 |
Теоретическая механика |
300р. |
|
14608 |
Теоретическая механика |

ПЛОСКО-ПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Для заданного положения механизма найти скорости точек В и С, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис. К6.1-К6.20.
AB = 60 см; ωкол = 3 c-1; BC = 120 см; r = 30 см.
|
K6.12 |
Теоретическая механика 2 |
300р. |
|
8664 |
Теоретическая механика |
ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ
Маховое колесо радиуса r и веса P вращается вокруг своей оси с угловой скоростью ω. Колесо останавливают с помощью тормозной колодки силой R, линия действия которой проходит через ось маховика перпендикулярно этой оси. Найти коэффициент трения между тормозной колодкой и ободом колеса, если оно до остановки сделано N оборотов. Трением в подшипниках пренебречь.
|
Д3.2 |
Теоретическая механика 2 |
300р. |
|
11214 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.
№ варианта |
х = х(t), cм |
у = у(t), см |
Время t1, с |
К1.8 |
4cos(πt/2) |
3sin(πt/2) |
1,5 |
|
K1.8 |
Теоретическая механика 2 |
300р. |
|
8128 |
Электротехника |

ЗАДАНИЕ № 2 «РАСЧЕТ ТРЁХФАЗНОЙ ЦЕПИ»
3.1. Внутри здания сети внутреннего электроснабжения выполнены по схеме "звезда" с нейтральным проводом. Отдельные помещения подключены к разным фазам трехфазного источника электроэнергии с линейным напряжением Uл = 380 В и частотой тока f = 50 Гц. На основании данных табл. 3.1 - 3.2 определить для своего варианта (последняя цифра трехзначного варианта из предыдущего задания – номер строки в табл. 3.2, предпоследняя цифра – номер строки в табл. 3.1) нагрузку каждой фазы, причем электропотребители в фазе включаются параллельно. Считая лампу накачивания (ЛН) активной нагрузкой, калорифер (К), электродвигатель (ЭД) и трансформатор (ТР) активно-индуктивной нагрузкой, начертить электрическую схему замещения рассчитываемой трехфазной цепи для своего варианта.
3.2. Выполнить анализ электрического состояния полученной в п. 3.1 схемы при наличии нейтрального провода:
1) определить активное, реактивное и полное сопротивления каждого электропотребителя;
2) рассчитать токи, протекающие через каждый электропотребитель (токи в параллельных ветвях каждой фазы);
3) определить для каждой фазы полное сопротивление, активную, реактивную и полную мощность, коэффициент мощности;
4) рассчитать линейные токи и ток в нейтральном проводе;
5) определить для всей трехфазной нагрузки активную PН, реактивную QH и полную SH мощности, коэффициент мощности cos φH и составить баланс мощностей;
6) построить в масштабе совмещенную векторную диаграмму напряжений и токов.
Таблица 3.1. Вид нагрузки в фазах
Номер строки |
Электроприемники в фазах |
Фаза A |
Фаза B |
Фаза C |
3 |
ЛН, ТР, К |
К |
ЛН, ЭД |
Таблица 3.2. Параметры нагрузки
Номер строки |
ЛН |
К |
ТР |
Эд |
PЛН |
PК |
cos φК |
SТР |
cos φТР |
PЭД |
КПД |
cos φЭД |
3 |
150 |
1500 |
0,96 |
1000 |
0,75 |
400 |
0,78 |
0,87 |
3.3. Примечания:
1. Для всех токов и напряжений определить действующее значение и начальную фазу.
2. На схеме замещения изображать активную нагрузку в виде резистора, активно-индуктивную нагрузку в виде последовательного соединения резистора и идеальной индуктивной катушки.
3. Баланс мощностей должен сойтись с погрешностью менее 1%.
|
|
|
300р. |
|
12486 |
Теоретическая механика |

Для заданного механизма найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки.
AB = 15 см; r = 15 см ; ωOA = 4 c-1; ω1 = 3 c-1.
|
K1.19 |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|
10848 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.6, -исходные данные приведены в таблице 2.
Номер варианта |
Р1, кН |
P2, кН |
P3, кН |
M, кН∙м |
a, м |
b, м |
α, град |
С-2.6. |
7 |
9 |
0 |
5 |
1.0 |
1.0 |
30° |
|
C2.6. |
Теоретическая механика 2 |
300р. |
|
8684 |
Теоретическая механика |
ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ
Пружина имеет в ненапряжённом состоянии длину 20 см. Сила, необходимая для изменения её длины на 0,01 м, равна 1,96 Н. С какой скоростью v вылетит из трубки шарик массой 0,03 кг, если пружина была сжата до длины 0,1 м. Трубка с пружиной расположена горизонтально.
|
Д3.20 |
Теоретическая механика 2 |
300р. |
|
11232 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.
№ варианта |
х = х(t), cм |
у = у(t), см |
Время t1, с |
К1.17 |
4cos(2πt) |
6sin(2πt) |
1/3 |
|
K1.17 |
Теоретическая механика 2 |
300р. |
|
14560 |
Теоретическая механика |

ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3
№ варианта |
Уравнение движения груза 1 S = S(t), см |
R2 |
r2 |
R3 |
r3 |
t1 |
К3.1 |
160t2 |
50 |
30 |
70 |
40 |
2 |
|
K3.1 |
Теоретическая механика 2 |
300р. |
|
8610 |
Теоретическая механика |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
На рис. К3.12 показана схема механизма, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Ползун в данном положении механизма имеет скорость VB = 4 м/с и ускорение aB = 6 м/с2. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек А, Д, Е, угловые скорости указанных шатунов и кривошипа О1А, а также ускорение точки А.
|
K5.12 |
Теоретическая механика 2 |
300р. |
|
11168 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ЦЕНТРА ТЯЖЕСТИ ОДНОРОДНОГО ТЕЛА
Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.5. Размеры ферм даны в метрах, остальных тел - в сантиметрах.
|
C9.5 |
Теоретическая механика 2 |
300р. |
|
8542 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.11.
|
C4.11_1 |
Теоретическая механика |
300р. |
|
11104 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунке.
|
C7.13 |
Теоретическая механика 2 |
300р. |
|
9708 |
Теоретическая механика |

СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ
Прямоугольная пластина (рис. К4.3) вращается вокруг неподвижной оси с постоянной угловой скоростью ω = -3 с-1 заданной в табл. К3 (при знаке минус направление ω противоположно показанному на рисунке).
Ось вращения на рис K4.3 ось вращения OO1 лежит в плоскости пластины (пластина вращается в пространстве)
№ усл |
ω, с-1 |
Рис. 0-5 |
b, см |
S = AM = f(t) |
0 |
-2 |
16 |
60∙(t4 - t2) + 56 |
По пластине вдоль прямой BD (рис K4.3) движется точка M. Закон ее относительного движения, выражаемый уравнением $s = AM = 60(t^4 - t^2) + 56$ (s — в сантиметрах, t — в секундах), задан в табл. K4 отдельно для рис. K4.3. На всех рисунках точка M показана в положении, при котором s = AM > 0 (при s > 0 точка М находится по другую сторону от точки А).
Определить абсолютную скорость и абсолютное ускорение точки M в момент времени t1 = 1 с.
|
|
|
300р. |
|
10642 |
Теоретическая механика |

ПЛОСКАЯ ПРОИЗВОЛЬНАЯ СИСТЕМА СИЛ
Определение реакций опор твердого тела
Найти реакции опор конструкции. Размеры (рис.) в схемах конструкций представлены в метрах. Нагрузка указана табл.2.
Вариант |
G |
P |
M, кН∙м |
q, кН∙м |
α, град |
кН |
2 |
12 |
8 |
10 |
- |
60 |
|
|
|
300р. |
|
8474 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 1.12, исходные данные приведены в табл. 1.
Номер варианта |
P, кН |
G, кН |
M, кНм |
q, кН/м |
l, м |
α, град |
C1.2 |
15 |
12 |
8 |
1 |
1,5 |
60° |
|
C1.2 |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|
11040 |
Теоретическая механика |

Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.
|
C6.1 |
Теоретическая механика 2 |
300р. |
|
14758 |
Теоретическая механика |

По призме C массой m = 7 кг могут двигаться тележки A и B массами m1 = 1 кг и m2 = 2 кг соответственно. Тележки связаны невесомой нитью, переброшенной через неподвижный блок Д. В начальный момент система находится в покое, затем тележка A начинает двигаться относительно призмы влево по закону Sотн = 5t2 (м). Определить ускорение призмы.
|
Д9.7 |
Теоретическая механика 2 |
300р. |
|
10976 |
Теоретическая механика |

СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.11, исходные данные приведены в табл. 1.
Номер варианта |
Р, кН |
G, кН |
M, кН∙м |
q, кН∙м |
l, м |
α, град |
C1.11 |
10 |
8 |
6 |
2 |
2 |
30° |
|
C1.11 |
Теоретическая механика 2 |
300р. |
|
6479 |
Теоретическая механика |

По заданным уравнениям относительного движения точки S = S(t) по переносящему телу и угловой скорости ω=ω(t) этого тела приведенным в табл. 2, найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1. Варианты расчетных схем изображены на рисунке.
Номер варианта |
№ Дано |
ω(t), рад/с |
S(t), см |
R, см |
a, см |
t, сек |
30 |
2 |
-π∙t |
π∙(3+cos(2π∙t)) |
10 |
- |
1/3 |
Точка M пластины движется по дуге окружности радиуса R = 0,10 м вращается вокруг стороны квадрата AB с угловой скоростью ω = 3∙t (рад/с). По дуге окружности точка М двигается согласно уравнению AM = S(t) = π∙(3+cos(2∙π∙t)) (см). Определить абсолютные скорость и ускорение точки в момент времени t1 = 1/3 (с).
|
|
|
300р. |
|
11822 |
Теоретическая механика |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Для заданного положения механизма найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки.
Дано: AO = 30 см, AB = 40 см, AC = 20 см, ωOA = 2 c-1, O1B = 30 см.
Найти: vA; vB; vC; ωAB = ?
|
|
|
300р. |
|
5128 |
Теоретическая механика |
ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Точка на ободе маховика в период разгона движется по закону φ = 0,8(t3 + 3t2), где угол φ задан в радианах, а время t - в секундах. Радиус маховика R = 1,6 м. Найти угловую скорость и угловое ускорение маховика, а также нормальное, касательное и полное ускорение точки обода маховика в тот момент времени, когда ее линейная скорость составляет v = 36 м/с. Сколько оборотов совершил маховик к этому моменту времени?
|
K4.18 |
Теоретическая механика 2 |
300р. |
|
10912 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20.
Определить реакции опор A и B балки ABC, испытывающей действие груза весом P, пары сил с моментом M и распределенной нагрузки интенсивностью
q =3 кН/м; P = 15 кН; M = 10 кН∙м; l1 = 4 м; l2 = 2 м, α=30°
|
C3.19. |
Теоретическая механика 2 |
300р. |
|
5092 |
Теоретическая механика |
ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Маховое колесо радиуса R = 0.5 м имело начальную скорость ω0 = 30π с-1. Определить закон вращательного движения колеса, считая его равнозамедленным, а также касательное, нормальное и полное ускорение точки, лежащей на его ободе, если линейная скорость этой точки через 2 с после начала движения v = 30 м/с и начальный угол φ0 = 0.
|
K4.9 |
Теоретическая механика 2 |
300р. |
|
8344 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.8 -исходные данные приведены в таблице 2.
Таблица 2
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
С2.8 |
2 |
5 |
12 |
1,8 |
1,8 |
- |
60° |
|
C2.8 |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|
14712 |
Теоретическая механика |

На тележке массой М подвешен математический маятник, который совершает колебания по закону φ = φ0 = const. Длина нити маятника равна l, масса точечного груза - m. Найти закон движения тележки, если в начальный момент тележка находилась в покое, а маятник был отведён от вертикали на угол φ0 и отпущен без начальной скорости.
|
Д4.16 |
Теоретическая механика 2 |
300р. |
|
10930 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. C4.8, исходные данные указаны в таблице 3.
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
C4.8 |
4 |
4 |
3 |
3 |
2.5 |
1.5 |
30° |
|
C4.8 |
Теоретическая механика 2 |
300р. |
|
5103 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.
№ варианта |
х = х(t), cм |
y = у(t), см |
Время t1, с |
К1.10 |
$3\sin\frac{\pi t}{2}$ |
$4\cos\frac{\pi t}{2}$ |
0,5 |
|
K1.10_1 |
Теоретическая механика |
300р. |
|
10866 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.15, -исходные данные приведены в таблице 2.
Номер варианта |
Р1, кН |
P2, кН |
P3, кН |
M кН∙м |
a, м |
b, м |
α, град |
С-2.15. |
20 |
20 |
0 |
6 |
3 |
4 |
60° |
|
C2.15. |
Теоретическая механика 2 |
300р. |
|
11250 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.
№ варианта |
S = S(t), cм |
R, см |
Время t1, с |
К2.6 |
5sin(πt/3) |
3cos(πt/3) - 2 |
2 |
|
K2.6 |
Теоретическая механика 2 |
300р. |
|
3285 |
Теоретическая механика |
ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Угловая скорость винта совершившего посадку самолета, равная в данный момент ω0 = 80π с-1, через t1 = 10 секунд после выключения мотора становится равной ω = 40π с-1. Считая вращение винта равнозамедленным, определить скорость и ускорение точки винта в момент t2 = 12 с, если расстояние до этой точки от оси вращения равно 1,5 м.
|
K4.7 |
Теоретическая механика 2 |
300р. |
|
14578 |
Теоретическая механика |

ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3
№ варианта |
Уравнение движения груза 1 S = S(t), см |
R2 |
r2 |
R3 |
r3 |
t1 |
К3.10 |
160t2 |
50 |
30 |
70 |
40 |
2 |
|
K3.10 |
Теоретическая механика 2 |
300р. |
|