8474 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 1.12, исходные данные приведены в табл. 1.
Номер варианта |
P, кН |
G, кН |
M, кНм |
q, кН/м |
l, м |
α, град |
C1.2 |
15 |
12 |
8 |
1 |
1,5 |
60° |
|
C1.2 |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|
11040 |
Теоретическая механика |

Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.
|
C6.1 |
Теоретическая механика 2 |
300р. |
|
10976 |
Теоретическая механика |

СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.11, исходные данные приведены в табл. 1.
Номер варианта |
Р, кН |
G, кН |
M, кН∙м |
q, кН∙м |
l, м |
α, град |
C1.11 |
10 |
8 |
6 |
2 |
2 |
30° |
|
C1.11 |
Теоретическая механика 2 |
300р. |
|
14758 |
Теоретическая механика |

По призме C массой m = 7 кг могут двигаться тележки A и B массами m1 = 1 кг и m2 = 2 кг соответственно. Тележки связаны невесомой нитью, переброшенной через неподвижный блок Д. В начальный момент система находится в покое, затем тележка A начинает двигаться относительно призмы влево по закону Sотн = 5t2 (м). Определить ускорение призмы.
|
Д9.7 |
Теоретическая механика 2 |
300р. |
|
6479 |
Теоретическая механика |

По заданным уравнениям относительного движения точки S = S(t) по переносящему телу и угловой скорости ω=ω(t) этого тела приведенным в табл. 2, найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1. Варианты расчетных схем изображены на рисунке.
Номер варианта |
№ Дано |
ω(t), рад/с |
S(t), см |
R, см |
a, см |
t, сек |
30 |
2 |
-π∙t |
π∙(3+cos(2π∙t)) |
10 |
- |
1/3 |
Точка M пластины движется по дуге окружности радиуса R = 0,10 м вращается вокруг стороны квадрата AB с угловой скоростью ω = 3∙t (рад/с). По дуге окружности точка М двигается согласно уравнению AM = S(t) = π∙(3+cos(2∙π∙t)) (см). Определить абсолютные скорость и ускорение точки в момент времени t1 = 1/3 (с).
|
|
|
300р. |
|
11822 |
Теоретическая механика |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Для заданного положения механизма найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки.
Дано: AO = 30 см, AB = 40 см, AC = 20 см, ωOA = 2 c-1, O1B = 30 см.
Найти: vA; vB; vC; ωAB = ?
|
|
|
300р. |
|
5128 |
Теоретическая механика |
ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Точка на ободе маховика в период разгона движется по закону φ = 0,8(t3 + 3t2), где угол φ задан в радианах, а время t - в секундах. Радиус маховика R = 1,6 м. Найти угловую скорость и угловое ускорение маховика, а также нормальное, касательное и полное ускорение точки обода маховика в тот момент времени, когда ее линейная скорость составляет v = 36 м/с. Сколько оборотов совершил маховик к этому моменту времени?
|
K4.18 |
Теоретическая механика 2 |
300р. |
|
10912 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20.
Определить реакции опор A и B балки ABC, испытывающей действие груза весом P, пары сил с моментом M и распределенной нагрузки интенсивностью
q =3 кН/м; P = 15 кН; M = 10 кН∙м; l1 = 4 м; l2 = 2 м, α=30°
|
C3.19. |
Теоретическая механика 2 |
300р. |
|
5092 |
Теоретическая механика |
ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Маховое колесо радиуса R = 0.5 м имело начальную скорость ω0 = 30π с-1. Определить закон вращательного движения колеса, считая его равнозамедленным, а также касательное, нормальное и полное ускорение точки, лежащей на его ободе, если линейная скорость этой точки через 2 с после начала движения v = 30 м/с и начальный угол φ0 = 0.
|
K4.9 |
Теоретическая механика 2 |
300р. |
|
8344 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.8 -исходные данные приведены в таблице 2.
Таблица 2
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
С2.8 |
2 |
5 |
12 |
1,8 |
1,8 |
- |
60° |
|
C2.8 |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|
10930 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. C4.8, исходные данные указаны в таблице 3.
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
C4.8 |
4 |
4 |
3 |
3 |
2.5 |
1.5 |
30° |
|
C4.8 |
Теоретическая механика 2 |
300р. |
|
14712 |
Теоретическая механика |

На тележке массой М подвешен математический маятник, который совершает колебания по закону φ = φ0 = const. Длина нити маятника равна l, масса точечного груза - m. Найти закон движения тележки, если в начальный момент тележка находилась в покое, а маятник был отведён от вертикали на угол φ0 и отпущен без начальной скорости.
|
Д4.16 |
Теоретическая механика 2 |
300р. |
|
5103 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.
№ варианта |
х = х(t), cм |
y = у(t), см |
Время t1, с |
К1.10 |
$3\sin\frac{\pi t}{2}$ |
$4\cos\frac{\pi t}{2}$ |
0,5 |
|
K1.10_1 |
Теоретическая механика |
300р. |
|
10866 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.15, -исходные данные приведены в таблице 2.
Номер варианта |
Р1, кН |
P2, кН |
P3, кН |
M кН∙м |
a, м |
b, м |
α, град |
С-2.15. |
20 |
20 |
0 |
6 |
3 |
4 |
60° |
|
C2.15. |
Теоретическая механика 2 |
300р. |
|
11250 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.
№ варианта |
S = S(t), cм |
R, см |
Время t1, с |
К2.6 |
5sin(πt/3) |
3cos(πt/3) - 2 |
2 |
|
K2.6 |
Теоретическая механика 2 |
300р. |
|
3285 |
Теоретическая механика |
ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Угловая скорость винта совершившего посадку самолета, равная в данный момент ω0 = 80π с-1, через t1 = 10 секунд после выключения мотора становится равной ω = 40π с-1. Считая вращение винта равнозамедленным, определить скорость и ускорение точки винта в момент t2 = 12 с, если расстояние до этой точки от оси вращения равно 1,5 м.
|
K4.7 |
Теоретическая механика 2 |
300р. |
|
14578 |
Теоретическая механика |

ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3
№ варианта |
Уравнение движения груза 1 S = S(t), см |
R2 |
r2 |
R3 |
r3 |
t1 |
К3.10 |
160t2 |
50 |
30 |
70 |
40 |
2 |
|
K3.10 |
Теоретическая механика 2 |
300р. |
|
8628 |
Теоретическая механика |

Точка М движется по ободу диска радиуса R = 0,3 м со скоростью vотн = 4 м/с . Определить абсолютную скорость точки М в указанном положении, если закон вращения диска φ = 2t2 рад.
|
K7.11 |
Теоретическая механика 2 |
300р. |
|
11186 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ЦЕНТРА ТЯЖЕСТИ ОДНОРОДНОГО ТЕЛА
Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.14. Размеры ферм даны в метрах, остальных тел - в сантиметрах.
|
C9.14 |
Теоретическая механика 2 |
300р. |
|
8560 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = x(t), у = y(t). найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.
Номер варианта |
х = х(t), cм |
у = у(t), см |
Время t1, с |
K1.5 |
2∙t |
t2 - 3 |
2 |
|
K1.5_1 |
Теоретическая механика |
300р. |
|
14034 |
Теоретическая механика |

Однородная прямоугольная пластина массой m со сторонами 2a и 4a вращается вокруг вертикальной неподвижной оси O, перпендикулярной к ее плоскости. На пластину действует пара сил с моментом M = 2t, лежащая в ее плоскости. Определить закон изменения угловой скорости пластины, если в начальный момент она была неподвижна
|
Д5.1 |
Теоретическая механика 2 |
300р. |
|
11122 |
Теоретическая механика |

ТРЕНИЕ СКОЛЬЖЕНИЯ И ТРЕНИЕ КАЧЕНИЯ
Расчетные схемы даны на рис. С8.2. Груз A весом P лежит на наклонной плоскости с углом α. Определить наибольший вес Qmax груза B, при котором возможно равновесие, если коэффициент трения между грузом A и плоскостью равен f.
|
C8.2 |
Теоретическая механика 2 |
300р. |
|
9024 |
Теоретическая механика |

Однородная прямоугольная плита весом P = 5 кН со сторонами AB = 3l, BC = 2l закреплена в точке A сферическим шарниром, а в точке B цилиндрическим шарниром (подшипником) и удерживается в равновесии невесомым стержнем СС’ (рис. C2.4)
На плиту действует пара сил с моментом M = 6 кН м, лежащая в плоскости плиты, и две силы. Значения этих сил, их направления и точки приложения указаны в табл. C2. при этом силы F1 и F2 лежат в плоскостях, параллельных плоскости xy, сила F2 — в плоскости, параллельной xz, сила F2 — в плоскости, параллельной yz. Точки приложения сил (D,E,H) находятся в серединах сторон плиты.
Определить реакции связей в точках A, B и C. При подсчетах принять l = 0,8 м.
|
C2.4. |
Теоретическая механика |
300р. |
|
8494 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. С2.13, исходные данные указаны в таблице 3.
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
С2.13 |
5 |
6 |
2 |
3 |
2.5 |
1.0 |
60° |
|
C2.13_1 |
Теоретическая механика |
300р. |
|
5569 |
Теоретическая механика |
Для заданного положения механизма найти скорости точек В и С, а также угловую скорость звена, которому принадлежат эти точки.
Выполнить:
- построить механизм в масштабе;
- вычислить и построить скорость точки.
|
K6.10 |
Теоретическая механика 2 |
300р. |
|
11058 |
Теоретическая механика |

Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.
|
C6.10 |
Теоретическая механика 2 |
300р. |
|
8412 |
Электротехника |

ЗАДАНИЕ № 2 «РАСЧЕТ ТРЁХФАЗНОЙ ЦЕПИ»
3.1. Внутри здания сети внутреннего электроснабжения выполнены по схеме "звезда" с нейтральным проводом. Отдельные помещения подключены к разным фазам трехфазного источника электроэнергии с линейным напряжением Uл = 380 В и частотой тока f = 50 Гц. На основании данных табл. 3.1 - 3.2 определить для своего варианта (последняя цифра трехзначного варианта из предыдущего задания – номер строки в табл. 3.2, предпоследняя цифра – номер строки в табл. 3.1) нагрузку каждой фазы, причем электропотребители в фазе включаются параллельно. Считая лампу накачивания (ЛН) активной нагрузкой, калорифер (К), электродвигатель (ЭД) и трансформатор (ТР) активно-индуктивной нагрузкой, начертить электрическую схему замещения рассчитываемой трехфазной цепи для своего варианта.
3.2. Выполнить анализ электрического состояния полученной в п. 3.1 схемы при наличии нейтрального провода:
1) определить активное, реактивное и полное сопротивления каждого электропотребителя;
2) рассчитать токи, протекающие через каждый электропотребитель (токи в параллельных ветвях каждой фазы);
3) определить для каждой фазы полное сопротивление, активную, реактивную и полную мощность, коэффициент мощности;
4) рассчитать линейные токи и ток в нейтральном проводе;
5) определить для всей трехфазной нагрузки активную PН, реактивную QH и полную SH мощности, коэффициент мощности cos φH и составить баланс мощностей;
6) построить в масштабе совмещенную векторную диаграмму напряжений и токов.
Таблица 3.1. Вид нагрузки в фазах
Номер строки |
Электроприемники в фазах |
Фаза A |
Фаза B |
Фаза C |
6 |
ЛН, ТР |
ЛН, ЭД, К |
К |
Таблица 3.2. Параметры нагрузки
Номер строки |
ЛН |
К |
ТР |
Эд |
PЛН |
PК |
cos φК |
SТР |
cos φТР |
PЭД |
КПД |
cos φЭД |
6 |
40 |
1200 |
0,97 |
400 |
0,62 |
180 |
0,60 |
0,75 |
3.3. Примечания:
1. Для всех токов и напряжений определить действующее значение и начальную фазу.
2. На схеме замещения изображать активную нагрузку в виде резистора, активно-индуктивную нагрузку в виде последовательного соединения резистора и идеальной индуктивной катушки.
3. Баланс мощностей должен сойтись с погрешностью менее 1%.
|
|
|
300р. |
|
13894 |
Теоретическая механика |

Тело 1 массой 6 кг может двигаться по горизонтальной направляющей. Тело 1 и однородный стержень 2 массой 3 кг и длиной l = 0,8 м опустился под действием силы тяжести и занимает вертикальное положение. В начальный момент система находилась в покое. Пренебрегая трением в оси А, найти скорость v бруска в тот момент, когда стержень проходит через вертикаль.
|
Д4.19 |
Теоретическая механика 2 |
300р. |
|
10994 |
Теоретическая механика |

СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.20, исходные данные приведены в табл. 1.
Номер варианта |
Р, кН |
G, кН |
M, кН∙м |
q, кН∙м |
l, м |
α, град |
C1.20 |
15 |
10 |
50 |
- |
1 |
30° |
|
C1.20 |
Теоретическая механика 2 |
300р. |
|
6497 |
Теоретическая механика |

ПРИМЕНЕНИЕ УРАВНЕНИЙ ЛАГРАНЖА ВТОРОГО РОДА К ИЗУЧЕНИЮ ДВИЖЕНИЯ МЕХАНИЧЕСКОЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ
Тело D массой m1 = 50 кг вращается вокруг вертикальной оси O1z под действием пары сил с моментом Mz = -14t2. Варианты расчетных схем изображены на рис. 7.1. При этом по желобу АВ тела D под действием внутренней силы F = (t3 + 4)2, направленной по касательной к желобу (управляющее воздействие), движется материальная точка М массой m2 = 12 кг. Согласно закону равенства действия и противодействия с такой же по величине силой, но направленной в противоположную сторону, точка М действует на тело D.Используя уравнения Лагранжа второго рода составить дифференциальные уравнения движения механической системы в обобщенных координатах. Сопротивлением движению пренебречь.
Тело D рассматривать как тонкую однородную пластину. Форма пластины выбирается в соответствии с вариантом задачи.
Номер варианта |
m1, кг |
m2, кг |
a, м |
b, м |
R, м |
α, град |
Mz = Mz(t), Н∙м |
F = F(t), Н |
20 |
50 |
12 |
1 |
- |
1,2 |
- |
-14t2 |
(t3 + 4)2 |
|
|
|
300р. |
|
8512 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. С3.5 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4
Номер варианта |
Номера стержней |
Номера стержней |
Р1, кН |
Р2, кН |
С3.5 |
1, 6, 4 |
2, 3 |
120 |
80 |
|
C3.5_1 |
Теоретическая механика |
300р. |
|
11076 |
Теоретическая механика |

Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.
|
C6.19 |
Теоретическая механика 2 |
300р. |
|
8432 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.17, -исходные данные приведены в таблице 2.
Номер варианта |
Р1, кН |
P2, кН м |
M, кН∙м |
a, м |
b, м |
l, м |
α, град |
С-2.17 |
4 |
5 |
7 |
1.6 |
1.6 |
0.8 |
30° |
|
C2.17 |
МИИТ. Теоретическая механика. 2012 год |
300р. |
|
11012 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. C5.7 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4
Номер варианта |
Номера стержней |
Номера стержней |
Р1, кН |
Р2, кН |
C5.7 |
1, 9, 3 |
4, 5 |
150 |
120 |
|
C5.7 |
Теоретическая механика 2 |
300р. |
|
14796 |
Теоретическая механика |

Груз D массой m, получив в точке A начальную скорость v0, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис.3.1, табл. 3.2).
На участке АВ на груз кроме силы тяжести действуют постоянная сила Q (ее направление показано на рисунках).
В точке B груз, не изменяя своей скорости, переходит на участок BC трубы, где на него кроме силы тяжести действует переменная сила F, проекция которой Fx на ось х задана в таблице.
Считая груз материальной точкой и зная время t1 движения груза от точки A до точки B, найти скорость груза на участке BC через t2 = 2 сек. после выхода из точки B. Трением груза о трубу пренебречь.
Вариант |
m, кг |
v0, м/c |
Q, Н |
t1, с |
Fx, Н |
0 |
2,4 |
12 |
5 |
1,5 |
2t |
|
Д1-0 |
Методичка по термеху. Нижний Новгород. 2019 год |
300р. |
|
8362 |
Теоретическая механика |

ПРИНЦИП ДАЛАМБЕРА
Тонкое однородное проволочное кольцо массой m, радиусом R вращается с постоянной угловой скоростью ω вокруг оси O, проходящей через его центр перпендикулярно его плоскости. Наибольшее усилие, которое выдерживает проволока при растяжении, равно S. С какой наибольшей угловой скоростью ω может вращаться кольцо без разрыва? Расстояние от центра O до центра тяжести полуокружности xC = 2R/(3π).
|
Д6.5 |
Теоретическая механика 2 |
300р. |
|
13846 |
Теоретическая механика |

Доска ОА массой m длиной l может вращаться без трения вокруг горизонтальной оси О. В нижний конец A неподвижно висящей доски, попадает пуля массой m1, летящая горизонтально со скоростью v и застревает в ней. Определить угловую скорость доски после попадания пули. При вычислении момента инерции доски считать ее однородным стержнем
|
Д5.4 |
Теоретическая механика 2 |
300р. |
|
10948 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. C4.17, исходные данные указаны в таблице 3.
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
C4.17 |
4 |
3.6 |
4 |
1.0 |
2.2 |
1.2 |
60° |
|
C4.17 |
Теоретическая механика 2 |
300р. |
|
14730 |
Теоретическая механика |

ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОГО МОМЕНТА.
Груз B массой m1 прикреплен к тросу, намотанному на барабан радиусом R, массой m2. Барабан начинает вращаться вместе с невесомой крестовиной, на концах которой прикреплены четыре груза массой m3 каждый, под действием вращающего момента M. Все стержни крестовины имеют одинаковую длину 2l. Определить закон изменения скорости груза. Барабан считать сплошным цилиндром.
|
Д5.16 |
Теоретическая механика 2 |
300р. |
|
5113 |
Теоретическая механика |
ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. С3.6 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4
Номер варианта |
Номера стержней |
Номера стержней |
Р1, кН |
Р2, кН |
С3.15 |
2, 11, 4 |
6, 7 |
90 |
140 |
|
C3.15_1 |
Теоретическая механика |
300р. |
|
10884 |
Теоретическая механика |

ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20. Столб АВ нагружен силой P, распределенной нагрузкой интенсивности q и парой сил с моментом M. Определить реакции заделки.
P = 20 кН: q = З кН/м; M = 60 кН м: l1 = 3 м; l2 = 2 м.
|
C3.5. |
Теоретическая механика 2 |
300р. |
|
6359 |
Теоретическая механика |

ПРИМЕНЕНИЕ УРАВНЕНИЙ ЛАГРАНЖА ВТОРОГО РОДА К ИЗУЧЕНИЮ ДВИЖЕНИЯ МЕХАНИЧЕСКОЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ. Тело D массой m1 =120 кг вращается вокруг вертикальной оси O1z под действием пары сил с моментом Mz = 75∙t3. Варианты расчетных схем изображены на рисунке. При этом по желобу АВ тела D под действием внутренней силы $F=\sqrt{t+\sin t}$, направленной по касательной к желобу (управляющее воздействие), движется материальная точка М массой m2 = 20 кг. Согласно закону равенства действия и противодействия с такой же по величине силой, но направленной в противоположную сторону, точка М действует на тело D. Варианты числовых значений параметров приведены в таблице.
Используя уравнения Лагранжа второго рода составить дифференциальные уравнения движения механической системы в обобщенных координатах. Сопротивлением движению пренебречь.
Тело D рассматривать как тонкую однородную пластину. Форма пластины выбирается в соответствии с вариантом задачи. Осевой момент инерции тела определять по формуле, приведенной в таблице.
Номер варианта |
m1, кг |
m2, кг |
a, м |
Mz = Mz(t), Н∙м |
F = F(t), Н |
29 |
120 |
20 |
5 |
75t3 |
$\sqrt{t+\sin t}$ |
|
D2.18 |
Теоретическая механика |
300р. |
|
5061 |
Теоретическая механика |
ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. С3.6 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4
Номер варианта |
Номера стержней |
Номера стержней |
Р1, кН |
Р2, кН |
С3.6 |
2,7,4 |
1,5 |
110 |
70 |
|
C3.6_1 |
Теоретическая механика |
300р. |
|
11268 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.
№ варианта |
S = S(t), cм |
R, см |
Время t1, с |
К2.14 |
3cos(πt/6) |
2sin(πt/6)-4 |
5 |
|
K2.14 |
Теоретическая механика 2 |
300р. |
|
14596 |
Теоретическая механика |

ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3
№ варианта |
Уравнение движения груза 1 S = S(t), см |
R2 |
r2 |
R3 |
r3 |
t1 |
К3.19 |
160t2 |
50 |
30 |
70 |
40 |
2 |
|
K3.19 |
Теоретическая механика 2 |
300р. |
|
11204 |
Теоретическая механика |
КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.
№ варианта |
х = х(t), cм |
у = у(t), см |
Время t1, с |
К1.3 |
6t2 - 3 |
3t |
1 |
|
K1.3 |
Теоретическая механика 2 |
300р. |
|
8118 |
Электротехника |

ЗАДАНИЕ № 2 «РАСЧЕТ ТРЁХФАЗНОЙ ЦЕПИ»
3.1. Внутри здания сети внутреннего электроснабжения выполнены по схеме "звезда" с нейтральным проводом. Отдельные помещения подключены к разным фазам трехфазного источника электроэнергии с линейным напряжением Uл = 380 В и частотой тока f = 50 Гц. На основании данных табл. 3.1 - 3.2 определить для своего варианта (последняя цифра трехзначного варианта из предыдущего задания – номер строки в табл. 3.2, предпоследняя цифра – номер строки в табл. 3.1) нагрузку каждой фазы, причем электропотребители в фазе включаются параллельно. Считая лампу накачивания (ЛН) активной нагрузкой, калорифер (К), электродвигатель (ЭД) и трансформатор (ТР) активно-индуктивной нагрузкой, начертить электрическую схему замещения рассчитываемой трехфазной цепи для своего варианта.
3.2. Выполнить анализ электрического состояния полученной в п. 3.1 схемы при наличии нейтрального провода:
1) определить активное, реактивное и полное сопротивления каждого электропотребителя;
2) рассчитать токи, протекающие через каждый электропотребитель (токи в параллельных ветвях каждой фазы);
3) определить для каждой фазы полное сопротивление, активную, реактивную и полную мощность, коэффициент мощности;
4) рассчитать линейные токи и ток в нейтральном проводе;
5) определить для всей трехфазной нагрузки активную PН, реактивную QН и полную SН мощности, коэффициент мощности cos φH и составить баланс мощностей;
6) построить в масштабе совмещенную векторную диаграмму напряжений и токов.
Таблица 3.1. Вид нагрузки в фазах
Номер строки |
Электроприемники в фазах |
Фаза A |
Фаза B |
Фаза C |
7 |
ЛН, К |
ЛН, ЭД |
ЛН ТР |
Таблица 3.2. Параметры нагрузки
Номер строки |
ЛН |
К |
ТР |
Эд |
PЛН |
PК |
cos φК |
SТР |
cos φТР |
PЭД |
КПД |
cos φЭД |
5 |
500 |
800 |
0,98 |
630 |
0,69 |
120 |
0,64 |
0,84 |
3.3. Примечания:
1. Для всех токов и напряжений определить действующее значение и начальную фазу.
2. На схеме замещения изображать активную нагрузку в виде резистора, активно-индуктивную нагрузку в виде последовательного соединения резистора и идеальной индуктивной катушки.
3. Баланс мощностей должен сойтись с погрешностью менее 1%.
|
|
|
300р. |
|
8582 |
Фотоэффект |
ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Винт совершившего посадку самолета с момента выключения мотора совершил до остановки 100 оборотов. Начальная скорость винта соответствовала 1200 об/мин. Сколько времени прошло с момента выключения мотора до остановки винта, если считать его вращение равно замедленным?
|
K4.3 |
Теоретическая механика 2 |
300р. |
|
11140 |
Теоретическая механика |

ТРЕНИЕ СКОЛЬЖЕНИЯ И ТРЕНИЕ КАЧЕНИЯ
Расчетные схемы даны на рис. С8.11. Однородная горизонтальная рама, состоящая из четырех однородных стержней, удерживается в вертикальном положении силами трения во втулках A1 и А2. Коэффициент трения в этих втулках соответственно равны f1 и f2. Определить наибольшее расстояние Н между втулками, если длина горизонтального стержня равна l.
|
C8.11 |
Теоретическая механика 2 |
300р. |
|
9744 |
Электротехника |

ЗАДАНИЕ № 2 «РАСЧЕТ ТРЁХФАЗНОЙ ЦЕПИ»
3.1. Внутри здания сети внутреннего электроснабжения выполнены по схеме "звезда" с нейтральным проводом. Отдельные помещения подключены к разным фазам трехфазного источника электроэнергии с линейным напряжением Uл = 380 В и частотой тока f = 50 Гц. На основании данных табл. 3.1 - 3.2 определить для своего варианта (последняя цифра трехзначного варианта из предыдущего задания – номер строки в табл. 3.2, предпоследняя цифра – номер строки в табл. 3.1) нагрузку каждой фазы, причем электропотребители в фазе включаются параллельно. Считая лампу накачивания (ЛН) активной нагрузкой, калорифер (К), электродвигатель (ЭД) и трансформатор (ТР) активно-индуктивной нагрузкой, начертить электрическую схему замещения рассчитываемой трехфазной цепи для своего варианта.
3.2. Выполнить анализ электрического состояния полученной в п. 3.1 схемы при наличии нейтрального провода:
1) определить активное, реактивное и полное сопротивления каждого электропотребителя;
2) рассчитать токи, протекающие через каждый электропотребитель (токи в параллельных ветвях каждой фазы);
3) определить для каждой фазы полное сопротивление, активную, реактивную и полную мощность, коэффициент мощности;
4) рассчитать линейные токи и ток в нейтральном проводе;
5) определить для всей трехфазной нагрузки активную PН, реактивную QH и полную SH мощности, коэффициент мощности cos φH и составить баланс мощностей;
6) построить в масштабе совмещенную векторную диаграмму напряжений и токов.
Таблица 3.1. Вид нагрузки в фазах
Номер строки |
Электроприемники в фазах |
Фаза A |
Фаза B |
Фаза C |
3 |
ЛН, ТР, К |
К |
ЛН, ЭД |
Таблица 3.2. Параметры нагрузки
Номер строки |
ЛН |
К |
ТР |
Эд |
PЛН |
PК |
cos φК |
SТР |
cos φТР |
PЭД |
КПД |
cos φЭД |
3 |
150 |
1500 |
0,96 |
1000 |
0,75 |
400 |
0,78 |
0,87 |
3.3. Примечания:
1. Для всех токов и напряжений определить действующее значение и начальную фазу.
2. На схеме замещения изображать активную нагрузку в виде резистора, активно-индуктивную нагрузку в виде последовательного соединения резистора и идеальной индуктивной катушки.
3. Баланс мощностей должен сойтись с погрешностью менее 1%.
|
233.2 |
|
300р. |
|