10888 |

ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20. Симметричная арка весом 50 кН нагружена сосредоточенной силой P, распределенной нагрузкой интенсивности q и парой сил с моментом M. Найти давление арки на опоры. P = 50 кН; q = 8 кН/м; М = 40 кН∙м; R = 4 м; h = 7 м; α = 45°
|
Теоретическая механика |
C3.7. |
Теоретическая механика 2 |
300₽ |
|
11274 |
КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.
№ варианта |
S = S(t), cм |
R, см |
Время t1, с |
К2.17 |
4cos(2πt) |
6sin(2πt) |
1/3 |
|
Теоретическая механика |
K2.17 |
Теоретическая механика 2 |
300₽ |
|
5129 |
ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
На рис. К3.18 показана схема механизма, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Ползун в данном положении механизма имеет скорость VB = 4 м/с и ускорение aB = 6 м/с2. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек А, Д, Е, угловые скорости указанных шатунов и кривошипа О1А, а также ускорение точки А.
|
Теоретическая механика |
K5.18 |
Теоретическая механика 2 |
300₽ |
|
14598 |

ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3
№ варианта |
Уравнение движения груза 1 S = S(t), см |
R2 |
r2 |
R3 |
r3 |
t1 |
К3.20 |
160t2 |
50 |
30 |
70 |
40 |
2 |
|
Теоретическая механика |
K3.20 |
Теоретическая механика 2 |
300₽ |
|
8600 |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
На рис. К3.1 показана схема механизма, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Кривошип O1А вращается вокруг оси O1 с постоянной угловой скоростью ω1 = ωO1A = 4 с-1. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек A, B, Д, Е, угловые скорости указанных шатунов и кривошипа О2В, а также ускорение точки В.
|
Теоретическая механика |
K5.1 |
Теоретическая механика 2 |
300₽ |
|
8690 |

ПРИНЦИП ДАЛАМБЕРА
Два тонких однородных стержня AB и DE одинаковой массы m скреплены невесомым стержнем C1C2. Стержень жёстко соединён с вертикальной осью O1O2, с которой он образует угол α. Стержни вращаются вокруг оси O1O2 с постоянной угловой скоростью ω. Даны размеры: O1O = OO2 = b; C1O = OC2 = l; AC1 = C1B; DC2 = C2E. Определить реакции подпятника и подшипника.
|
Теоретическая механика |
Д6.4 |
Теоретическая механика 2 |
300₽ |
|
16811 |
В тетраэдре ABCD медианы грани ABC пересекаются в точке M, точка O - середина отрезка DM. Через точку O проведены два сечения - первое параллельно AB и CD, второе параллельно AC и BD. Постройте линию пересечения этих сечений и определите, в каком отношении она делит площадь каждого из сечений.
|
Стереометрия |
|
|
300₽ |
|
10904 |

ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20. Кран весом G имеет вертикальную ось вращения AB. Расстояние AB = h = 5 м, центр тяжести крана отстоит от оси AB на расстоянии l = 2 м, тележка C несет груз весом Р. Определить реакции подшипника B и подпятника A крана.
G = 8 кН; Р = З кН; L = 5 м.
|
Теоретическая механика |
C3.15. |
Теоретическая механика 2 |
300₽ |
|
14036 |

В передаче вращением колесо 1 приводится в движение моментом M1 к колесу 2 приложен момент сопротивления М2. Найти угловое ускорение первого колеса, считая колеса однородными дисками, массы которых —m1 и m2, а радиусы —r1 и r2.
|
Теоретическая механика |
Д7.1 |
Теоретическая механика 2 |
300₽ |
|
14616 |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис.
OA = 30 см = 0,30 м; AB = 30 см = 0,30 м; AC = 20 см = 0,20 м; ωOA = 4 c-1.
|
Теоретическая механика |
K6.2 |
Теоретическая механика 2 |
300₽ |
|
8616 |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
На рис. К3.16 показана схема механизма, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Ползун в данном положении механизма имеет скорость VB = 4 м/с и ускорение aB = 6 м/с2. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек А, Д, Е, угловые скорости указанных шатунов и кривошипа О1А, а также ускорение точки А.
|
Теоретическая механика |
K5.16 |
Теоретическая механика 2 |
300₽ |
|
16582 |

Физический маятник представляет собой тонкий однородный стержень длиной l = 1 м и массой m, на котором жестко закреплена материальная точка массой M на расстоянии d (d < l/2) от нижнего конца стержня. Точка подвеса маятника находится на расстоянии x (x < l/2) от верхнего конца стержня (рис. 1). Найти зависимость периода малых колебаний T маятника от расстояния x и построить график этой зависимости T(x) в интервале изменения x от 0 до l/2. Определить по графику минимальное значение периода T колебаний маятника. Ускорение свободного падения g = 9,81 м/c2.
№ варианта |
d, M/m |
6 |
d = 0,1 м, M/m = 0,5 |
|
Механика |
|
|
300₽ |
|
10840 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.17, -исходные данные приведены в таблице 2.
Номер варианта |
Р1, кН |
P2, кН |
P3, кН |
M кН∙м |
a, м |
b, м |
α, град |
С-2.1. |
6 |
8 |
0 |
3 |
1.4 |
0.8 |
45° |
|
Теоретическая механика |
C2.1. |
Теоретическая механика 2 |
300₽ |
|
10920 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. C4.3, исходные данные указаны в таблице 3.
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
C4.3 |
3 |
4.8 |
2 |
2.8 |
1.5 |
1.2 |
30° |
|
Теоретическая механика |
C4.3 |
Теоретическая механика 2 |
300₽ |
|
8930 |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис.
OA = 40 см = 0,40 м; AB = 40 см = 0,40 м; AC = 20 см = 0,20 м; ωOA = 4 c-1.
|
Теоретическая механика |
K6.17 |
Теоретическая механика 2 |
300₽ |
|
14470 |
Дана плотность распределения случайного вектора
$$f(x,y)=\left\{\begin{array}{ll}
C(x+2xy+2y^2), & x, y \in [0,1] \\
0, & x, y \notin [0, 1]
\end{array} \right. $$
Найти константу С и вероятность того, что случайный вектор (X, Y) принадлежит треугольнику с вершинами в точках (0, 0), (1, 2), (0, 1). Являются ли X и Y зависимыми величинами? Найти координаты центра рассеивания и функцию распределения.
|
Теория вероятностей |
|
|
300₽ |
|
8632 |

По стороне треугольника, вращающегося вокруг стороны АВ с угловой скоростью ω = 4 с -1, движется точка М с постоянной скоростью vотн = 2 м/с . Определить абсолютную скорость точки в этот момент времени, если длина МВ = 0,3 м., угол α = 30°.
|
Теоретическая механика |
K7.13 |
Теоретическая механика 2 |
300₽ |
|
11872 |

Определить ускорения тел и силу натяжения нити (рис.2.1). Массы тел равны m1 = 4 кг, m2 = 3 кг, m3 = 2 кг, коэффициент трения μ = 0,25, угол α = 30°, F = 50 Н. Постройте график зависимости ускорения от угла, определите критический угол, при котором движение системы будет равномерным, какие при этом будут силы натяжения нитей.
|
Механика |
|
|
300₽ |
|
14716 |

ТЕОРЕМА О ДВИЖЕНИИ ЦЕНТРА МАСС
Механизм шарнирного параллелограмма состоит из трёх одинаковых стержней массой m и длиной l. Кривошипы ОА и ОrВ вращаются с постоянной угловой скоростью ω. Определить сумму горизонтальных составляющих реакций шарниров O1 и O2 в функции угла φ.
|
Теоретическая механика |
Д4.3 |
Теоретическая механика 2 |
300₽ |
|
10856 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.10, -исходные данные приведены в таблице 2.
Номер варианта |
Р1, кН |
P2, кН |
P3, кН |
M кН∙м |
a, м |
b, м |
α, град |
С-2.10. |
4 |
5 |
6 |
3 |
0.4 |
1.1 |
60° |
|
Теоретическая механика |
C2.10. |
Теоретическая механика 2 |
300₽ |
|
3282 |
ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы (рис. С3.1 – С3.20) соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4
Номер варианта |
Номера стержней |
Номера стержней |
Р1, кН |
Р2, кН |
С3.7 |
1, 9, 3 |
4,5 |
150 |
120 |
В точке А заменить подвижный шарнир на НЕ ПОДВИЖНЫЙ.
|
Теоретическая механика |
C3.7_1 |
Теоретическая механика |
300₽ |
|
11166 |

ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ЦЕНТРА ТЯЖЕСТИ ОДНОРОДНОГО ТЕЛА
Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.4. Размеры ферм даны в метрах, остальных тел - в сантиметрах.
|
Теоретическая механика |
C9.4 |
Теоретическая механика 2 |
300₽ |
|
14320 |

ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОГО МОМЕНТА. ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЁРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ОСИ
Круглая горизонтальная платформа вращается без трения вокруг неподвижной вертикальной оси О, перпендикулярной к ее плоскости, под действием пары сил с моментом М (пара сил лежит в плоскости платформы). Платформа представляет однородный диск радиусом R и массой m. В начальный момент платформа неподвижна. Определить закон вращательного движения платформы.
|
Теоретическая механика |
Д5.2 |
Теоретическая механика 2 |
300₽ |
|
8386 |
ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Маховое колесо начинает вращаться равноускоренно из состояния покоя. Через 2 минуты после начала движения оно имеет угловую скорость, соответствующую 240 об/мин. Сколько оборотов сделало колесо за 3 минуты? Найти скорость и ускорение точки колеса на расстоянии 0,4 м от оси вращения в момент времени t3 = 4 мин.
|
Теоретическая механика |
K4.17 |
Теоретическая механика 2 |
300₽ |
|
14804 |

Груз D массой m, получив в точке A начальную скорость v0, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис.3.1, табл. 3.2).
На участке АВ на груз кроме силы тяжести действуют постоянная сила Q (ее направление показано на рисунках).
В точке B груз, не изменяя своей скорости, переходит на участок BC трубы, где на него кроме силы тяжести действует переменная сила F, проекция которой Fx на ось х задана в таблице.
Считая груз материальной точкой и зная время t1 движения груза от точки A до точки B, найти скорость груза на участке BC через t2 = 2 сек. после выхода из точки B. Трением груза о трубу пренебречь.
Вариант |
m, кг |
v0, м/c |
Q, Н |
t1, с |
Fx, Н |
4 |
6 |
15 |
12 |
1 |
t3 |
|
Теоретическая механика |
Д1-4 |
Методичка по термеху. Нижний Новгород. 2019 год |
300₽ |
|
8486 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. С2.4, исходные данные указаны в таблице 3.
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
С2.4_1 |
7 |
5.2 |
4 |
3.2 |
2.7 |
1.6 |
60° |
|
Теоретическая механика |
C2.4_1 |
Теоретическая механика |
300₽ |
|
10942 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. C4.14, исходные данные указаны в таблице 3.
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
C4.14 |
4 |
5.2 |
3 |
2.5 |
3.2 |
1.0 |
30° |
|
Теоретическая механика |
C4.14 |
Теоретическая механика 2 |
300₽ |
|
9750 |

ЗАДАНИЕ № 2-3-5 «РАСЧЕТ ЦЕПИ ПОСТОЯННОГО ТОКА»
1.1. Для заданной согласно своему варианту электрической схемы составить систему уравнений по законам Кирхгофа, достаточную для определения токов ветвей. Полученную систему уравнений не решать.
1.2. Рассчитать токи во всех ветвях заданной электрической схемы методом контурных токов. Правильность расчетов проверить составлением баланса мощностей.
1.3. Примечания:
1) Первая цифра в трехзначном номере варианта, заданного преподавателем (как правило, три последние цифры в зачетной книжке студента), соответствует порядковому номеру строки в таблице 1.1, вторая цифра – порядковому номеру строки в таблице 1.2, третья цифра – номеру схемы на рис. 1.1.
2) Баланс мощностей должен сойтись с погрешностью менее 1%.
Таблица № 1.1
№ п/п |
E1, В |
E2, B |
2 |
18 |
20 |
Таблица № 1.2
№ п/п |
R1, Ом |
R2, Ом |
R3, Ом |
R4, Ом |
R5, Ом |
R6, Ом |
3 |
7 |
8 |
9 |
10 |
5 |
7 |
|
Электротехника |
235.1 |
|
300₽ |
|
11022 |

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. C5.12 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4
Номер варианта |
Номера стержней |
Номера стержней |
Р1, кН |
Р2, кН |
C5.12 |
1, 8, 6 |
3, 4 |
150 |
130 |
|
Теоретическая механика |
C5.12 |
Теоретическая механика 2 |
300₽ |
|
11102 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунке.
|
Теоретическая механика |
C7.12 |
Теоретическая механика 2 |
300₽ |
|
11182 |

ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ЦЕНТРА ТЯЖЕСТИ ОДНОРОДНОГО ТЕЛА
Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.12. Размеры ферм даны в метрах, остальных тел - в сантиметрах.
|
Теоретическая механика |
C9.12 |
Теоретическая механика 2 |
300₽ |
|
5062 |
ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.6.
|
Теоретическая механика |
C4.6_1 |
Теоретическая механика |
300₽ |
|
8404 |

Звено ОА длиной 0,5 м вращается согласно уравнению φ = 4t3 рад. По дуге окружности радиуса r = 0,3 м движется точка М по закону АМ = 2rt м (рис. К 2.15). Определить абсолютную скорость точки М в момент времени t1 = π/4 c, когда угол α = 60°.
|
Теоретическая механика |
K7.5 |
Теоретическая механика 2 |
300₽ |
|
8502 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. С2.19, исходные данные указаны в таблице 3.
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
С2.19 |
5 |
4 |
3 |
2.5 |
2.0 |
1.3 |
30° |
|
Теоретическая механика |
C2.19_1 |
Теоретическая механика |
300₽ |
|
10958 |

СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.2, исходные данные приведены в табл. 1.
Номер варианта |
Р, кН |
G, кН |
M, кН∙м |
q, кН∙м |
l, м |
α, град |
C1.2 |
10 |
6 |
5 |
2 |
1,5 |
45° |
|
Теоретическая механика |
C1.2 |
Теоретическая механика 2 |
300₽ |
|
8968 |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис.
OA = 30 см = 0,30 м; AB = 30 см = 0,30 м; AC = 15 см = 0,15 м; ωOA = 4 c-1.
|
Теоретическая механика |
K6.18 |
Теоретическая механика 2 |
300₽ |
|
16724 |

В сеть переменного тока напряжением U включена цепь, состоящая из двух параллельных ветвей с сопротивлением r1, r2 и xL (рис. 15, табл. 20). Определить показания измерительных приборов, реактивную мощность цепи, построить векторную диаграмму.
Таблица 20
Номер варианта |
U, В |
r1, Ом |
r2, Ом |
xL, Ом |
7 |
400 |
40 |
7 |
10 |
|
Электротехника |
|
|
300₽ |
|
6361 |

ПРИМЕНЕНИЕ ТЕОРЕМЫ ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ К ИЗУЧЕНИЮ ДВИЖЕНИЯ МЕХАНИЧЕСКОЙ СИСТЕМЫ. Механическая система, изображенная на рисунке, приводится в движение из состояния покоя. При этом колесо B катится без скольжения по плоскости. Массы тел A, B и C) (mA, mB, mC), заданная нагрузка (F и M) и радиус инерции ρB колеса B приведены в таблице. Радиусы колеса B и шкива C соответственно равны RB = 0,8 м, rB = 0,5 м, Rc = 0,2 м. Углы α и β имеют значения: α = 30°, β = 60°. Коэффициент трения качения колеса B равен k = 0,05∙RB; коэффициент трения скольжения тела A равен f = 0,1.
Используя теорему об изменении кинетической энергии системы, определить скорость и ускорение тела A после того, как оно переместится на расстояние SA = 2 м. Шкив C считать однородным сплошным диском; силами сопротивления в подшипниках, массой троса, его растяжением и проскальзыванием по ободу шкива пренебречь.
Числовые значения параметров контрольной работы Д4 вариант №29 (1)
Номер варианта |
№ Дано |
mA, кг |
mB, кг |
mC, кг |
M, Н∙м |
F, Н |
ρB, см |
29 |
1 |
30 |
120 |
80 |
200 |
40 |
0,7 |
|
Теоретическая механика |
D3.29 |
Теоретическая механика |
300₽ |
|
11038 |

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. C5.20 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4
Номер варианта |
Номера стержней |
Номера стержней |
Р1, кН |
Р2, кН |
C5.20 |
7, 10, 2 |
5, 4 |
170 |
200 |
|
Теоретическая механика |
C5.20 |
Теоретическая механика 2 |
300₽ |
|
16764 |
Правильный треугольник со стороной 3 и правильный треугольник со стороной 4 в пересечении дают выпуклый шестиугольник периметра 7. Докажите, что у треугольников соответствующие стороны параллельны.
|
Геометрия |
|
|
300₽ |
|
11118 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунке.
|
Теоретическая механика |
C7.20 |
Теоретическая механика 2 |
300₽ |
|
11198 |

ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ЦЕНТРА ТЯЖЕСТИ ОДНОРОДНОГО ТЕЛА
Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.20. Размеры ферм даны в метрах, остальных тел - в сантиметрах.
|
Теоретическая механика |
C9.20 |
Теоретическая механика 2 |
300₽ |
|
8336 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.4 -исходные данные приведены в таблице 2.
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
С2.4 |
2 |
3 |
3 |
0,8 |
1,2 |
- |
30° |
|
Теоретическая механика |
C2.4 |
МИИТ. Теоретическая механика. 2012 год |
300₽ |
|
5087 |

СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.20, исходные данные приведены в табл. 1.
Номер варианта |
Р, кН |
G, кН |
M, кН∙м |
q, кН∙м |
l, м |
α, град |
C1.19 |
15 |
10 |
50 |
- |
1 |
30° |
|
Теоретическая механика |
C1.19 |
МИИТ. Теоретическая механика. 2012 год |
300₽ |
|
10494 |

ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК ДЕЙСТВИЯ ПРОСТРАНСТВЕННОЙ СИСТЕМЫ СИЛ
Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.
|
Теоретическая механика |
C2.17 |
Теоретическая механика |
300₽ |
|
8420 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.12, -исходные данные приведены в таблице 2.
Таблица 2
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
С-2.12 |
3 |
4 |
7 |
1,6 |
1,8 |
1,2 |
60° |
|
Теоретическая механика |
C2.12 |
МИИТ. Теоретическая механика. 2012 год |
300₽ |
|
9702 |

СТАТИКА
Жесткая рама (рис C1.4, табл. C1) закреплена в точке A шарнирно, а в точке B прикреплена или к невесомому стержню BB1, или к шарнирной опоре на катках, стержень прикреплен к раме и к неподвижной опоре шарнирами
На раму действуют пара сил с моментом M= 100 Н∙м и две силы, значения которых, направления и точки приложения указаны в таблице (например, в условиях № 1 на раму действуют сила F1 = 10 Н под углом 30° горизонтальной оси, приложенная в точке K, и сила F4 = 40 Н под углом 60° к горизонтальной оси, приложенная в точке H).
Определить реакции связей в точках A и B, вызываемые заданными нагрузками. При окончательных подсчетах принять l = 0,5 м.
Указания. Задача С1 — на равновесие тела под действием плоской системы сил. Составляя уравнения равновесия, учесть, что уравнение моментов будет более простым (содержать меньше неизвестных), если брать моменты относительно точки, где пересекаются линии действия двух реакций связей (в данном случае относительно точки A). При вычислении момента силы F часто удобно разложить её на составляющие F' и F", для которых плечи легко вычисляются, в частности на составляющие, параллельные координатным осям, и воспользоваться теоремой Вариньона. Тогда m0(F) = m0(F) + m0(F")
Сила |
F1 = 10 H |
F2 = 20 H |
F3 = 30 H |
F4 = 40 H |
Номер условия |
Точка прилож. |
a1 |
Точка прилож. |
a2 |
Точка прилож. |
а3 |
Точка прилож. |
а4 |
0 |
- |
- |
D |
60 |
Е |
45 |
- |
- |
|
Теоретическая механика |
|
|
300₽ |
|
8518 |

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. С3.13 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4
Номер варианта |
Номера стержней |
Номера стержней |
Р1, кН |
Р2, кН |
С3.13 |
1,7,5 |
2,3 |
70 |
120 |
|
Теоретическая механика |
C3.13_1 |
Теоретическая механика |
300₽ |
|
10974 |

СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.10, исходные данные приведены в табл. 1.
Номер варианта |
Р, кН |
G, кН |
M, кН∙м |
q, кН∙м |
l, м |
α, град |
C1.10 |
16 |
- |
10 |
3 |
1 |
60° |
|
Теоретическая механика |
C1.10 |
Теоретическая механика 2 |
300₽ |
|
11054 |

Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.
|
Теоретическая механика |
C6.8 |
Теоретическая механика 2 |
300₽ |
|