8432 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.17, -исходные данные приведены в таблице 2.
Номер варианта |
Р1, кН |
P2, кН м |
M, кН∙м |
a, м |
b, м |
l, м |
α, град |
С-2.17 |
4 |
5 |
7 |
1.6 |
1.6 |
0.8 |
30° |
|
Теоретическая механика |
C2.17 |
МИИТ. Теоретическая механика. 2012 год |
300₽ |
|
5117 |
ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
На рис. К3.15 показаны схемы механизмов, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Ползун в данном положении механизма имеет скорость VB = 4 м/с и ускорение aB = 6 м/с2. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек А, Д, Е, угловые скорости указанных шатунов и кривошипа О1А, а также ускорение точки А.
|
Теоретическая механика |
K5.15 |
Теоретическая механика 2 |
300₽ |
|
16697 |

Идеальный одноатомный газ из состояния 1 с температурой T1 расширяется в процессе 1-2 прямо пропорциональной зависимости давления p от объема V. В процессе 1-2 давление увеличивается в k = 2 раза. Затем газ расширяется в изотермическом процессе 2-3, сжимается в процессе 3-4 прямо пропорциональной зависимости давления от объёма и сжимается в изотермическом процессе 4-1. Объемы газа в состояниях 2 и 4 равны (рис. 35).
- Найти температуру газа в процессе 2-3
- Найти отношение давлений в состояниях 1 и 3
- Найти молярную теплоёмкость газа в процессе 1-2
|
Молекулярная физика и термодинамика |
|
|
300₽ |
|
8530 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.1.
|
Теоретическая механика |
C4.1_1 |
Теоретическая механика |
300₽ |
|
10908 |

ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20.
Столб АВ нагружен силой P, распределенной нагрузкой интенсивности q и парой сил с моментом М. Определить реакции заделки.
P = 30 кH; q = 2 кН/м; М = 50 кН м; l1 = 4 м; l2 = 3 м.
|
Теоретическая механика |
C3.17. |
Теоретическая механика 2 |
300₽ |
|
5569 |
Для заданного положения механизма найти скорости точек В и С, а также угловую скорость звена, которому принадлежат эти точки.
Выполнить:
- построить механизм в масштабе;
- вычислить и построить скорость точки.
|
Теоретическая механика |
K6.10 |
Теоретическая механика 2 |
300₽ |
|
8620 |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
На рис. К3.20 показана схема механизма, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Ползун в данном положении механизма имеет скорость VB = 4 м/с и ускорение aB = 6 м/с2. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек А, Д, Е, угловые скорости указанных шатунов и кривошипа О1А, а также ускорение точки А.
|
Теоретическая механика |
K5.20 |
Теоретическая механика 2 |
300₽ |
|
16584 |

Физический маятник представляет собой тонкий однородный стержень длиной l = 1 м и массой m, на котором жестко закреплена материальная точка массой M на расстоянии d (d < l/2) от нижнего конца стержня. Точка подвеса маятника находится на расстоянии x (x < l/2) от верхнего конца стержня (рис. 1). Найти зависимость периода малых колебаний T маятника от расстояния x и построить график этой зависимости T(x) в интервале изменения x от 0 до l/2. Определить по графику минимальное значение периода T колебаний маятника. Ускорение свободного падения g = 9,81 м/c2.
№ варианта |
d, M/m |
4 |
d = 0,25 м, M/m = 1,0 |
|
Механика |
|
|
300₽ |
|
10844 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.17, -исходные данные приведены в таблице 2.
Номер варианта |
Р1, кН |
P2, кН |
P3, кН |
M кН∙м |
a, м |
b, м |
α, град |
С-2.4. |
5 |
6 |
0 |
3 |
1.2 |
0.8 |
30° |
|
Теоретическая механика |
C2.4. |
Теоретическая механика 2 |
300₽ |
|
13966 |

ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ.1 - С3.20. Однородная балка длиной l и весом P нагружена парой сил с моментом M и удерживается под углом 30° к горизонту невесомыми стержнями AC и AD и наклонной плоскостью EK. Определить давление балки на опорную плоскость и усилия в стержнях. P = 25 кН; M = 12 кН∙м; l = 5 м; α = 60°.
|
Теоретическая механика |
С3-17 |
Теоретическая механика |
300₽ |
|
10924 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. C4.5, исходные данные указаны в таблице 3.
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
C4.5 |
4 |
3.2 |
3 |
2.5 |
4 |
2.8 |
30° |
|
Теоретическая механика |
C4.5 |
Теоретическая механика 2 |
300₽ |
|
8934 |
ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК ДЕЙСТВИЯ ПРОСТРАНСТВЕННОЙ СИСТЕМЫ СИЛ
Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.
|
Теоретическая механика |
C2.3 |
МИИТ. Теоретическая механика. 2014 год |
300₽ |
|
13814 |


СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ
Диск радиуса R = 0,3 м вращается вокруг оси 0Z с угловой скоростью ω = 2 с-1. По его ободу движется точка с постоянной скоростью Vотн = 0,3 м/с. Определить абсолютную скорость точки в указанном положении, если угол α = 60°.
|
Теоретическая механика |
K7.1 |
Теоретическая механика 2 |
300₽ |
|
8636 |

По диаметру диска, вращающегося вокруг вертикальной оси 0Z с угловой скоростью ω = 3t2 с-1, движется точка М по закону Sотн = 0,6t2 м/с. Определить абсолютную скорость точки М в момент времени t = 1 с.
|
Теоретическая механика |
K7.16 |
Теоретическая механика 2 |
300₽ |
|
10860 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.12, -исходные данные приведены в таблице 2.
Номер варианта |
Р1, кН |
P2, кН |
P3, кН |
M кН∙м |
a, м |
b, м |
α, град |
С-2.12. |
6 |
5 |
6 |
4 |
1.1 |
0.9 |
60° |
|
Теоретическая механика |
C2.12. |
Теоретическая механика 2 |
300₽ |
|
5092 |
ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Маховое колесо радиуса R = 0.5 м имело начальную скорость ω0 = 30π с-1. Определить закон вращательного движения колеса, считая его равнозамедленным, а также касательное, нормальное и полное ускорение точки, лежащей на его ободе, если линейная скорость этой точки через 2 с после начала движения v = 30 м/с и начальный угол φ0 = 0.
|
Теоретическая механика |
K4.9 |
Теоретическая механика 2 |
300₽ |
|
11246 |
КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.
№ варианта |
S = S(t), cм |
R, см |
Время t1, с |
К2.4 |
3cos(πt/3) - 2 |
5sin(πt/3) |
4 |
|
Теоретическая механика |
K2.4 |
Теоретическая механика 2 |
300₽ |
|
14570 |

ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3
№ варианта |
Уравнение движения груза 1 S = S(t), см |
R2 |
r2 |
R3 |
r3 |
t1 |
К3.6 |
160t2 |
50 |
30 |
70 |
40 |
2 |
|
Теоретическая механика |
K3.6 |
Теоретическая механика 2 |
300₽ |
|
8568 |
КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = x(t), у = y(t). найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.
Номер варианта |
х = х(t), cм |
у = у(t), см |
Время t1, с |
K1.13 |
4t2 + 1 |
4t |
1 |
|
Теоретическая механика |
K1.13_1 |
Теоретическая механика |
300₽ |
|
14736 |

ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ. ПРИНЦИП ДАЛАМБЕРА
Два груза массами m1 и m2 подвешены на двух нитях, навёрнутых на барабаны с общей осью вращения. Радиусы барабанов равны r1 и r2 момент инерции барабанов относительно оси вращения O равен J0. Определить угловое ускорение барабанов.
|
Теоретическая механика |
Д7.8 |
Теоретическая механика 2 |
300₽ |
|
10876 |

ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20. Кронштейн ABC, весом которого пренебрегаем, испытывает действие груза весом G, пары сип с моментом M и силы P. Определить реакции заделки.
G = 4 кН; P = 9 кН; M = 12 кНм; a = 1,5 м; α = 45°.
|
Теоретическая механика |
C3.1. |
Теоретическая механика 2 |
300₽ |
|
5102 |
ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.10.
|
Теоретическая механика |
C4.10 |
Теоретическая механика |
300₽ |
|
8122 |

ЗАДАНИЕ № 2 «РАСЧЕТ ТРЁХФАЗНОЙ ЦЕПИ»
3.1. Внутри здания сети внутреннего электроснабжения выполнены по схеме "звезда" с нейтральным проводом. Отдельные помещения подключены к разным фазам трехфазного источника электроэнергии с линейным напряжением Uл = 380 В и частотой тока f = 50 Гц. На основании данных табл. 3.1 - 3.2 определить для своего варианта (последняя цифра трехзначного варианта из предыдущего задания – номер строки в табл. 3.2, предпоследняя цифра – номер строки в табл. 3.1) нагрузку каждой фазы, причем электропотребители в фазе включаются параллельно. Считая лампу накачивания (ЛН) активной нагрузкой, калорифер (К), электродвигатель (ЭД) и трансформатор (ТР) активно-индуктивной нагрузкой, начертить электрическую схему замещения рассчитываемой трехфазной цепи для своего варианта.
3.2. Выполнить анализ электрического состояния полученной в п. 3.1 схемы при наличии нейтрального провода:
1) определить активное, реактивное и полное сопротивления каждого электропотребителя;
2) рассчитать токи, протекающие через каждый электропотребитель (токи в параллельных ветвях каждой фазы);
3) определить для каждой фазы полное сопротивление, активную, реактивную и полную мощность, коэффициент мощности;
4) рассчитать линейные токи и ток в нейтральном проводе;
5) определить для всей трехфазной нагрузки активную PН, реактивную QH и полную SH мощности, коэффициент мощности cos φH и составить баланс мощностей;
6) построить в масштабе совмещенную векторную диаграмму напряжений и токов.
Таблица 3.1. Вид нагрузки в фазах
Номер строки |
Электроприемники в фазах |
Фаза A |
Фаза B |
Фаза C |
5 |
ЛН, ЭД |
ЛН |
ЛН, ТР, К |
Таблица 3.2. Параметры нагрузки
Номер строки |
ЛН |
К |
ТР |
Эд |
PЛН |
PК |
cos φК |
SТР |
cos φТР |
PЭД |
КПД |
cos φЭД |
9 |
100 |
400 |
1 |
1600 |
0,5 |
400 |
0,74 |
0,76 |
3.3. Примечания:
1. Для всех токов и напряжений определить действующее значение и начальную фазу.
2. На схеме замещения изображать активную нагрузку в виде резистора, активно-индуктивную нагрузку в виде последовательного соединения резистора и идеальной индуктивной катушки.
3. Баланс мощностей должен сойтись с погрешностью менее 1%.
|
Электротехника |
|
|
300₽ |
|
14586 |

ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3
№ варианта |
Уравнение движения груза 1 S = S(t), см |
R2 |
r2 |
R3 |
r3 |
t1 |
К3.14 |
160t2 |
50 |
30 |
70 |
40 |
2 |
|
Теоретическая механика |
K3.14 |
Теоретическая механика 2 |
300₽ |
|
8588 |
ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Колесо, имеющее неподвижную ось вращения, получило начальную угловую скорость 4π c-1. Сделав 20 оборотов, оно вследствие трения в подшипниках, остановилось. Определить угловое ускорение колеса, считая его постоянным, а также время вращения колеса до остановки.
|
Теоретическая механика |
K4.12 |
Теоретическая механика 2 |
300₽ |
|
13850 |

К нижнему шкиву С подъемника приложен вращающий момент М. Определить ускорение груза А массой m1 поднимаемого вверх, если масса противовеса В равна m2 а шкивы C и D радиусами r и массой m каждый представляют собой однородные круглые цилиндры. Массой ремня пренебречь.
|
Теоретическая механика |
Д7.4 |
Теоретическая механика 2 |
300₽ |
|
5042 |

В кулисном механизме при качании кулисы ОА вокруг оси о ползун В, перемещаясь вдоль кулисы, приводит в движение стержень ВС . Определить скорость движения ползуна В относительно кулисы в функции её угловой скорости ω и угла поворота φ.
|
Теоретическая механика |
K7.8 |
Теоретическая механика 2 |
300₽ |
|
10892 |

ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20. К изогнутой балке ABC, удерживаемой в равновесии тросом, перекинутым через блок K, приложены сила P, распределенная нагрузка интенсивности q и пара сил моментом M. Определить натяжение троса и реакцию шарнира A, полагая AD = ED = a; DE = BC = 4а; P = 8 кН; q = 3 кН/м; M = 4кН∙м; a = 2 м; α = 45°.
|
Теоретическая механика |
C3.9. |
Теоретическая механика 2 |
300₽ |
|
11278 |
КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.
№ варианта |
S = S(t), cм |
R, см |
Время t1, с |
К2.19 |
2sin(πt/4) - 4 |
3cos(π/4) |
1 |
|
Теоретическая механика |
K2.19 |
Теоретическая механика 2 |
300₽ |
|
12576 |

РАСЧЁТ РАЗВЕТВЛЕННОЙ МАГНИТНОЙ ЦЕПИ ПРИ ПОСТОЯННЫХ ТОКАХ
Для магнитной цепи (рис. 5) выполнить следующее:
1. Начертить схему замещения магнитной цепи, указав на ней направления магнитных потоков и магнитодвижущих сил (МДС);
2. Составить для магнитной цепи уравнения по законам Кирхгофа;
3. Определить магнитные потоки в стержнях и значение магнитной индукции в воздушном зазоре.
Размеры магнитопровода на рис. 5 даны в мм. Магнитопровод выполнен из электротехнической стали, кривая намагничивания которой представлена в табл. 2. Величины токов и число витков обмотки для каждого варианта даны в табл. 3.
Таблица 2
В, Тл |
0 |
0,5 |
0,7 |
0,9 |
1,0 |
1,1 |
1,2 |
1,3 |
1,4 |
1,6 |
1,7 |
1,75 |
Н, А/м |
0 |
100 |
140 |
200 |
250 |
350 |
500 |
700 |
1000 |
1800 |
2500 |
3000 |
Таблица 3
Предпоследняя цифра студента |
I1, А |
w1, витков |
w2, витков |
I2, А |
1 |
30 |
200 |
30 |
300 |
|
Электротехника |
211 |
СамГУПС Саратов. Общая электротехника и электроника. 2018 год |
300₽ |
|
14604 |

ПЛОСКО-ПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Для заданного положения механизма найти скорости точек В и С, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис. К6.1-К6.20.
OA = 30 см; AB = 60 см; AC = 30 см; ωOA = 6 с-1
|
Теоретическая механика |
K6.11 |
Теоретическая механика 2 |
300₽ |
|
8604 |

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
На рис. К3.4 показана схема механизма, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Кривошип O1А вращается вокруг оси O1 с постоянной угловой скоростью ω1 = ωO1A = 4 с-1. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек A, B, Д, Е, угловые скорости указанных шатунов и кривошипа О2В, а также ускорение точки В.
|
Теоретическая механика |
K5.4 |
Теоретическая механика 2 |
300₽ |
|
3287 |

Шары центробежного регулятора Уатта, вращающегося во-круг вертикальной оси Сz с угловой скоростью ω = 2 с-1, благодаря изменению нагрузки машины отходят от этой оси, имея для своих стержней в данном положении угловую скорость ω = 1,2 с-1. Найти абсолютную скорость шаров регулятора, если длина стержней l = 0,5 м, рас-стояние между осями их подвеса О1О = 2е = 0,1 м, угол α = 30°.
|
Теоретическая механика |
K7.7 |
Теоретическая механика 2 |
300₽ |
|
8698 |

ПРИНЦИП ДАЛАМБЕРА
Тонкий однородный стержень ОА массой m и длиной l, закрепленный шарнирно в своей середине О на оси ОО1 (оси Оу), вращается во-круг этой оси с постоянной угловой скоростью ω. При этом он удерживается в положении, образующем угол α с осью ОО1 при помощи пружины АД. Определить усилие в пружине
|
Теоретическая механика |
Д6.16 |
Теоретическая механика 2 |
300₽ |
|
14768 |

Стержень OA вращается в горизонтальной плоскости вокруг оси O с постоянной угловой скоростью ω. На стержне находится кольцо M, которое удерживается нитью в положении M0. В некоторый момент нить пережигается, и кольцо начинает движение по стержню. Найти уравнение движения кольца по стержню. Пренебречь трением.
|
Теоретическая механика |
Д9.12 |
Теоретическая механика 2 |
300₽ |
|
5059 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции. Схемы конструкций указаны на рисунке С1.16, исходные данные приведены в таблице.
Номер варианта |
P, кН |
G, кН |
M, кНм |
q, кН/м |
l, м |
α, град. |
C1.16 |
6 |
9 |
3 |
5 |
2 |
60° |
|
Теоретическая механика |
C1.16 |
МИИТ. Теоретическая механика. 2012 год |
300₽ |
|
8246 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.14, исходные данные приведены в табл. 1.
Номер варианта |
P, кН |
G, кН |
M, кНм |
q, кН/м |
l, м |
α, град |
C1.14 |
15 |
- |
3 |
4 |
1 |
45° |
|
Теоретическая механика |
C1.14 |
МИИТ. Теоретическая механика. 2012 год |
300₽ |
|
11218 |
КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.
№ варианта |
х = х(t), cм |
у = у(t), см |
Время t1, с |
К1.10 |
3sin(πt/2) |
4cos(πt/2) |
0,5 |
|
Теоретическая механика |
K1.10 |
Теоретическая механика 2 |
300₽ |
|
8356 |
ОПРЕДЕЛЕНИЕ СИЛ ПО ЗАДАННОМУ ДВИЖЕНИЮ МАТЕРИАЛЬНОЙ ТОЧКИ
Груз, привязанный к нити длиной l = 0,5 м, движется по окружности в вертикальной плоскости. Какую минимальную скорость в наивысшем положении должен иметь груз, чтобы нить оставалась натянутой.
|
Теоретическая механика |
Д1.2 |
Теоретическая механика 2 |
300₽ |
|
8444 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.5, -исходные данные приведены в таблице 2.
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
С-2.5 |
6 |
5 |
6 |
0,8 |
1,8 |
- |
60° |
|
Теоретическая механика |
C2.5 |
МИИТ. Теоретическая механика. 2012 год |
300₽ |
|
8540 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.5.
|
Теоретическая механика |
C4.5_1 |
Теоретическая механика |
300₽ |
|
10994 |

СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.20, исходные данные приведены в табл. 1.
Номер варианта |
Р, кН |
G, кН |
M, кН∙м |
q, кН∙м |
l, м |
α, град |
C1.20 |
15 |
10 |
50 |
- |
1 |
30° |
|
Теоретическая механика |
C1.20 |
Теоретическая механика 2 |
300₽ |
|
6397 |

ПРОСТРАНСТВЕННАЯ СИСТЕМА СИЛ
Изогнутая под прямыми углами пространственная рама концом А заделана в неподвижную опору и нагружена равномерно распределенной нагрузкой интенсивностью q или линейное I распределенной нагрузкой с максимальной интенсивностью qmax, парой сил с моментом M и силой P, расположенной в плоскости перпендикулярной участку рамы длиной l4 и образующей угол α с прямой изображенной на рисунке.
Определить опорные реакции рамы.
Варианты расчетных схем изображены па рисунке.
Номер на рисунке соответствует варианту задания. Числовые значения параметров приведены в таблице.
Номер варианта |
P, Н |
M, Н∙м |
q, Н/м |
l1, м |
l2, м |
l3, м |
l4, м |
α, ° |
5 |
200 |
500 |
300 |
1,8 |
1,2 |
1,4 |
1 |
150 |
|
Теоретическая механика |
|
|
300₽ |
|
11074 |

Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.
|
Теоретическая механика |
C6.18 |
Теоретическая механика 2 |
300₽ |
|
11154 |

Расчетные схемы даны на рис. С8.18. Найти наибольшую величину силы Tmax, при приложении которой к катушке весом P при помощи нити начнется ее качение по горизонтальной плоскости. Радиусы катушки равны r и R, а ее коэффициент трения качения равен δ.
|
Теоретическая механика |
C8.18 |
Теоретическая механика 2 |
300₽ |
|
11234 |
КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.
№ варианта |
х = х(t), cм |
у = у(t), см |
Время t1, с |
К1.18 |
5t - 6t2 |
2t |
1 |
|
Теоретическая механика |
K1.18 |
Теоретическая механика 2 |
300₽ |
|
8472 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. С 1.11, исходные данные приведены в табл. 1.
Номер варианта |
P, кН |
G, кН |
M, кНм |
q, кН/м |
l, м |
α, град |
C1.11 |
10 |
8 |
6 |
2 |
2 |
30° |
|
Теоретическая механика |
C1.1 |
МИИТ. Теоретическая механика. 2012 год |
300₽ |
|
10930 |

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. C4.8, исходные данные указаны в таблице 3.
Номер варианта |
Р, кН |
М, кН м |
q, кН/м |
a, м |
b, м |
l, м |
α, град |
C4.8 |
4 |
4 |
3 |
3 |
2.5 |
1.5 |
30° |
|
Теоретическая механика |
C4.8 |
Теоретическая механика 2 |
300₽ |
|
8556 |
КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = x(t), у = y(t). найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.
Номер варианта |
х = х(t), cм |
у = у(t), см |
Время t1, с |
K1.1 |
5t |
2 - 5t2 |
1 |
|
Теоретическая механика |
K1.1_1 |
Теоретическая механика |
300₽ |
|
11010 |

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. C5.6 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4
Номер варианта |
Номера стержней |
Номера стержней |
Р1, кН |
Р2, кН |
C5.6 |
2,7,4 |
1,5 |
110 |
70 |
|
Теоретическая механика |
C5.6 |
Теоретическая механика 2 |
300₽ |
|