Онлайн-магазин готовых решений

Вы можете мгновенно получить на свой е-мэйл решение любой из этих задач, оплатив её стоимость через онлайн-сервис на нашем сайте. Подробные инструкции по оплате можно увидеть, кликнув на ссылку номера задачи.
Если найти нужную задачу не удаётся, Вы можете оформить Заказ.

Как использовать поиск
Всего задач, соответствующих запросу: 7288
Номер Условие задачи Предмет Задачник Ценасортировать по убыванию
9062




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.1, -исходные данные приведены в таблице 2.

Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
C2.15. 20 20 6 3 4 - 60°
Теоретическая механика C2.15. Теоретическая механика 300₽
6481




Груз D массой т, получив в точке A начальную скорость движется по изогнутой трубе ABC, расположенной в вертикальной плоскости.
На участке AB трубы на груз, кроме силы тяжести, действует сила сопротивления R, зависящая от скорости v груза D: R = 0,05∙v2.
В точке B груз, изменив направление приобретенной скорости, но сохранив при этом ее величину, переходит на участок BC трубы, где на него, помимо силы тяжести, действует сила трения скольжения (коэффициент трения груза о трубу f = 0,2) и переменная по величине сила F = 0,5∙cos(2∙t), направленная вдоль участка BC. Проекция Fx последней силы на ось Bx задается.
Считая груз D материальной точкой, и зная расстояние AB или время t, движения груза от точки A до точки B, найти уравнение х = х(t) движения груза на участке BC.
Варианты расчетных схем изображены на рисунке.

Номер варианта № Дано m, кг v0, м/с µ, Н∙с/м n F, Н α, град t, сек l, м
28 2 6 18 0,05 2 0,5cos(2t) 30 - 4
Теоретическая механика 300₽
11130




ТРЕНИЕ СКОЛЬЖЕНИЯ И ТРЕНИЕ КАЧЕНИЯ
Расчетные схемы даны на рис. С8.6. Каток A радиуса r и весом Р лежит на наклонной плоскости с углом α. Определить наибольший вес груза Qmax груза B, при котором возможно равновесие, если коэффициент трения качения катка равен δ.

Теоретическая механика C8.6 Теоретическая механика 2 300₽
5127

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.18 5∙t - 6∙t2 2t 1
Теоретическая механика K1.18_1 Теоретическая механика 300₽
8236




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции. Схемы конструкций указаны на рисунке С1.15, исходные данные приведены в таблице.

Номер варианта P, кН G, кН M, кНм q, кН/м l, м α, град
C1.5 20 12 3 4 1 60°
Теоретическая механика C1.5 МИИТ. Теоретическая механика. 2012 год 300₽
11210

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.6 5sin(πt/3) 3cos(πt/3) - 2 2
Теоретическая механика K1.6 Теоретическая механика 2 300₽
8348




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.10 -исходные данные приведены в таблице 2.

Таблица 2
Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
C2.10 5 4 10 0,8 1,6 - 30°
Теоретическая механика C2.10 МИИТ. Теоретическая механика. 2012 год 300₽
8436




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схемы конструкций представлены на рис. С 2.18, -исходные данные приведены в таблице 2.

Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
С-2.18 6 8 3 1.6 1.2 1.0 30°
Теоретическая механика C2.18 МИИТ. Теоретическая механика. 2012 год 300₽
8532




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.17.

Теоретическая механика C4.17_1 Теоретическая механика 300₽
10986




СОСТАВЛЕНИЕ РАСЧЕТНОЙ СХЕМЫ ПЛОСКОЙ КОНСТРУКЦИИ
Используя принцип освобождаемости от связей, освободить плоскую конструкцию от связей и приложить к ней реакции связей. Равномерно-распределенную нагрузку заменить соответствующей равнодействующей силой. Силы, не параллельные осям координат, разложить на составляющие, параллельные осям координат. Построить расчетную схему конструкции. Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.16, исходные данные приведены в табл. 1.

Номер варианта Р, кН G, кН M, кН∙м q, кН∙м l, м α, град
C1.16 15 5 2 3 1 30°
Теоретическая механика C1.16 Теоретическая механика 2 300₽
11066




Определить модули главного вектора и главного момента относительно центра O пространственной системы сил (F1, F2, F3). Силы приложены к вершинам прямоугольного параллепипеда с ребрами a = 1 м, b = c = 3 м, причем F1 = 2 кН, F2 = 3 кН, F3 = 5 кН.

Теоретическая механика C6.14 Теоретическая механика 2 300₽
4835

Жесткая рама закреплена в точке A шарнирно, а в точке D прикреплена к невесомому стержню под углом α = 60°. На раму действует пара сил с моментом M = 80 кН∙м; сила F = 4 кН, приложенная в точке B под углом β=10°, распределенная нагрузка с интенсивностью q = 1 кН/м вдоль колена /BC/ = 2 м снизу, /ED/ = 4 м. Определить реакции в точках A и D.

Теоретическая механика C1.8 Теоретическая механика 300₽
6497




ПРИМЕНЕНИЕ УРАВНЕНИЙ ЛАГРАНЖА ВТОРОГО РОДА К ИЗУЧЕНИЮ ДВИЖЕНИЯ МЕХАНИЧЕСКОЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ
Тело D массой m1 = 50 кг вращается вокруг вертикальной оси O1z под действием пары сил с моментом Mz = -14t2. Варианты расчетных схем изображены на рис. 7.1. При этом по желобу АВ тела D под действием внутренней силы F = (t3 + 4)2, направленной по касательной к желобу (управляющее воздействие), движется материальная точка М массой m2 = 12 кг. Согласно закону равенства действия и противодействия с такой же по величине силой, но направленной в противоположную сторону, точка М действует на тело D.Используя уравнения Лагранжа второго рода составить дифференциальные уравнения движения механической системы в обобщенных координатах. Сопротивлением движению пренебречь.
Тело D рассматривать как тонкую однородную пластину. Форма пластины выбирается в соответствии с вариантом задачи.

Номер варианта m1, кг m2, кг a, м b, м R, м α, град Mz = Mz(t), Н∙м F = F(t), Н
20 50 12 1 - 1,2 - -14t2 (t3 + 4)2
Теоретическая механика 300₽
11146




ТРЕНИЕ СКОЛЬЖЕНИЯ И ТРЕНИЕ КАЧЕНИЯ
Расчетные схемы даны на рис. С8.14. Ящик стола имеет две симметрично расположенные ручки для выдвигания. Каково должно быть расстояние d между этими ручками, чтобы ящик при выдвигании не застревал? Ширина ящика и его длина соответственно a, b. Коэффициент трения скольжения равен f. Весом ящика пренебречь.

Теоретическая механика C8.14 Теоретическая механика 2 300₽
14300




Для заданного механизма дано: R = 0,3 м, АВ = 1 м, $\varphi_1(t)=\frac{\sqrt{3}}{6}(2t-t^2)+t$ рад.
Колесо катится без проскальзывания. Полагая, что в этот момент времени механизм занимает положение, указанное на рисунке, определить:
1) модуль скорости точки А;
2) модуль скорости точки B;
3) модуль угловой скорости звена AB;
4) направление вращения звена АB.

Теоретическая механика Д7.21 Теоретическая механика 2 300₽
11226

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = х(t), у = у(t) найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 1.

№ варианта х = х(t), cм у = у(t), см Время t1, с
К1.14 3cos(πt/6) 2sin(πt/6) - 3 5
Теоретическая механика K1.14 Теоретическая механика 2 300₽
8454




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. C1.9, исходные данные приведены в табл. 1.

Номер варианта P, кН G, кН M, кНм q, кН/м l, м α, град
C1.9 20 - 4 6 1 30°
Теоретическая механика C1.9 МИИТ. Теоретическая механика. 2012 год 300₽
10602




ДИНАМИКА
Груз D массой т, получив в точке A начальную скорость v0, движется по изогнутой трубе ABC, расположенной в вертикальной плоскости; участки трубы оба наклонные. На участке AB на груз кроме силы тяжести действуют сила Q (её направление показано на рисунках) и сила сопротивления R, зависящая от скорости v груза D: R = 0.8∙v2.
В точке B груз, не изменяя значения своей скорости, переходит на участок BC трубы, где на него кроме силы тяжести действует переменная сила F, проекция которой Fx на ось x задана в таблице: F = 4∙sin(4∙t).
Считая груз D материальной точкой, и зная расстояние AB или время t, движения груза от точки A до точки B, найти уравнение х = х(t) движения груза на участке BC.
Варианты расчетных схем изображены на рис. Д1.4.
Варианты числовых значений параметров приведены в табл. Д1.

№ Варианта m, кг v0, м/с Q, Н R, Н l, м t1, c Fx, Н
0 2,4 12 5 0,8∙v2 1.5 - 4∙sin(4∙t)
Теоретическая механика Теоретическая механика 300₽
8548




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунках С4.14.

Теоретическая механика C4.14_1 Теоретическая механика 300₽
11002




ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. C5.2 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4

Номер варианта Номера стержней Номера стержней Р1, кН Р2, кН
C5.2 1, 7, 5 2, 3 80 50
Теоретическая механика C5.2 Теоретическая механика 2 300₽
14150




ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ. ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ
Груз 1 массой m1, опускаясь вниз по призме, приводит в движение посредством нити, переброшенной через невесомый блок, груз 2 массой m2. Определить давление призмы на горизонтальную плоскость, если масса призмы равна m.

Теоретическая механика Д6.11 Теоретическая механика 2 300₽
11082




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ
Определить реакции связей пространственной конструкции, находящейся под действием сил F, P и пары сил с моментом М. Для всех вариантов принять F = 200 H, P = 300 H, M = 60 Нм, a = 1 м, схемы конструкций представлены на рисунке.

Теоретическая механика C7.2 Теоретическая механика 2 300₽
11162




ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ЦЕНТРА ТЯЖЕСТИ ОДНОРОДНОГО ТЕЛА
Найти положение центра тяжести плоской фермы, пластинки и объемного тела. Ферма состоит из однородных стержней; пластинка имеет малую постоянную толщину. Схемы тел показаны на рис. C9.2. Размеры ферм даны в метрах, остальных тел - в сантиметрах.

Теоретическая механика C9.2 Теоретическая механика 2 300₽
8382

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Движение точки вращающегося тела задано уравнениями $x=10\cos{2t^2}$; $y=10\sin{2t^2}$ (x и y - в см,t - в с). Найти закон вращения, скорость и ускорение точки тела, отстоящей от оси вращения на расстоянии r = 6 см. Начальная угловая скорость тела ω0 = 0 с-1.

Теоретическая механика K4.2 Теоретическая механика 2 300₽
14800




Груз D массой m, получив в точке A начальную скорость v0, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис.3.1, табл. 3.2).
На участке АВ на груз кроме силы тяжести действуют постоянная сила Q (ее направление показано на рисунках).
В точке B груз, не изменяя своей скорости, переходит на участок BC трубы, где на него кроме силы тяжести действует переменная сила F, проекция которой Fx на ось х задана в таблице.
Считая груз материальной точкой и зная время t1 движения груза от точки A до точки B, найти скорость груза на участке BC через t2 = 2 сек. после выхода из точки B. Трением груза о трубу пренебречь.

Вариант m, кг v0, м/c Q, Н t1, с Fx, Н
2 8 10 16 3 3t2 - 1
Теоретическая механика Д1-2 Методичка по термеху. Нижний Новгород. 2019 год 300₽
8480




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей заданной плоской конструкции, находящейся под действием плоской системы сил. Схема конструкции представлена на рис. С1.7, исходные данные приведены в табл. 1.

Номер варианта P, кН G, кН M, кНм q, кН/м l, м α, град
С1.7 12 6 8 3 1 30°
Теоретическая механика C1.7 МИИТ. Теоретическая механика. 2012 год 300₽
10938




ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. C4.12, исходные данные указаны в таблице 3.

Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
C4.12 7 4.8 2 1.5 3.0 1.3 30°
Теоретическая механика C4.12 Теоретическая механика 2 300₽
9746




ЗАДАНИЕ № 3 «РАСЧЕТ ЧЕТЫРЁХПОЛЮСНИКА»
На рис. 5.1 представлена Г-образная эквивалентная схема четырёхполюсника (ЧП), где Z1 – продольное сопротивление, Z2 – поперечное сопротивление.
Выполнить следующее:
1) начертить исходную схему ЧП;
2) свести полученную схему ЧП к Г-образной эквивалентной схеме ЧП, заменив трёхэлементные схемы замещения продольного и поперечного сопротивлений двухэлементными схемами: Z1 = R1 + jX1, Z2 = R2 + jX2. Дальнейший расчёт вести для эквивалентной схемы;
3) определить коэффициенты A – формы записи уравнений ЧП;
4) определить сопротивления холостого хода и короткого замыкания со стороны первичных (11’) и вторичных выводов (22’):
а) через A – параметры;
б) непосредственно через продольное и поперечное сопротивления для режимов холостого хода и короткого замыкания на соответствующих выводах;
5) определить характеристические сопротивления для выводов 11’ и 22’ и постоянную передачи ЧП;
6) определить комплексный коэффициент передачи по напряжению и передаточную функцию ЧП;
Таблица 5.1. Параметры элементов продольного и поперечного сопротивлений ЧП

Номер строки R, Ом L, мГ C, мкФ f0, кГц
2 30 5 5 30
Электротехника 233.3 300₽
8564

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = x(t), у = y(t). найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.

Номер варианта х = х(t), cм у = у(t), см Время t1, с
K1.4 3∙cos(πt/3) - 2 5∙sin(πt/3) 4
Теоретическая механика K1.4_1 Теоретическая механика 300₽
11018




ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ПЛОСКОЙ ФЕРМЫ
Определить усилия в стержнях плоской фермы рис. C5.10 соответственно способом разрезов Риттера и способом вырезания стержней с узлом фермы. Номера стержней и исходные данные указаны в табл. 4

Номер варианта Номера стержней Номера стержней Р1, кН Р2, кН
C5.10 7, 11, 5 1, 6 160 100
Теоретическая механика C5.10 Теоретическая механика 2 300₽
14572




ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3

№ варианта Уравнение движения груза 1 S = S(t), см R2 r2 R3 r3 t1
К3.7 160t2 50 30 70 40 2
Теоретическая механика K3.7 Теоретическая механика 2 300₽
8572

КИНЕМАТИКА ТОЧКИ
По заданным уравнениям движения точки М х = x(t), у = y(t). найти траекторию точки, а также для заданного момента времени t = t1 найти положение точки на ее траектории, определить и построить векторы скорости, нормального, касательного и полного ускорений, вычислить радиус кривизны в соответствующей точке траектории. Исходные данные для расчета приведены в табл. 4.

Номер варианта х = х(t), cм у = у(t), см Время t1, с
K1.16 3t2 + 4t -2t 1
Теоретическая механика K1.16_1 Теоретическая механика 300₽
10878




ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20. К изогнутой балке ABC, удерживаемой в равновесии тросом, перекинутым через блок, приложены сита P, распределенная нагрузка интенсивности q и пара сил моментом M. Определить натяжение троса и реакцию шарнира A, полагая АД = ЕВ = a; ДЕ = ВС = 4а. P = 6 кН; q = 2 кН/м; М = 5 кН м; a = 2 м; α = 30°.

Теоретическая механика C3.2. Теоретическая механика 2 300₽
11264

КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.

№ варианта S = S(t), cм R, см Время t1, с
К2.12 2sin(2πt/6) - 4 3cos(2πt/6) 2
Теоретическая механика K2.12 Теоретическая механика 2 300₽
14106




ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис.
AB = 10 см; r = 15 см; R = 25 см; vД = 100 см/с.

Теоретическая механика K1.15 МИИТ. Теоретическая механика. 2012 год 300₽
5060

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ ПЛОСКОЙ КОНСТРУКЦИИ
Определить реакции связей в точках А и В составной плоской конструкции, состоящей из двух твердых тел. Схемы конструкций приведены на рис. С2.6, исходные данные указаны в таблице.

Номер варианта Р, кН М, кН м q, кН/м a, м b, м l, м α, град
С2.6 2 2 1 1,8 2,5 0,8 60°
Теоретическая механика C2.6_1 Теоретическая механика 300₽
8124




ЗАДАНИЕ № 2 «РАСЧЕТ ТРЁХФАЗНОЙ ЦЕПИ»
3.1. Внутри здания сети внутреннего электроснабжения выполнены по схеме "звезда" с нейтральным проводом. Отдельные помещения подключены к разным фазам трехфазного источника электроэнергии с линейным напряжением Uл = 380 В и частотой тока f = 50 Гц. На основании данных табл. 3.1 - 3.2 определить для своего варианта (последняя цифра трехзначного варианта из предыдущего задания – номер строки в табл. 3.2, предпоследняя цифра – номер строки в табл. 3.1) нагрузку каждой фазы, причем электропотребители в фазе включаются параллельно. Считая лампу накачивания (ЛН) активной нагрузкой, калорифер (К), электродвигатель (ЭД) и трансформатор (ТР) активно-индуктивной нагрузкой, начертить электрическую схему замещения рассчитываемой трехфазной цепи для своего варианта.
3.2. Выполнить анализ электрического состояния полученной в п. 3.1 схемы при наличии нейтрального провода:
1) определить активное, реактивное и полное сопротивления каждого электропотребителя;
2) рассчитать токи, протекающие через каждый электропотребитель (токи в параллельных ветвях каждой фазы);
3) определить для каждой фазы полное сопротивление, активную, реактивную и полную мощность, коэффициент мощности;
4) рассчитать линейные токи и ток в нейтральном проводе;
5) определить для всей трехфазной нагрузки активную PН, реактивную QH и полную SH мощности, коэффициент мощности cos φH и составить баланс мощностей;
6) построить в масштабе совмещенную векторную диаграмму напряжений и токов.
Таблица 3.1. Вид нагрузки в фазах

Номер строки Электроприемники в фазах
Фаза A Фаза B Фаза C
2 ЛН, ЭД ЛН, К ЛН, ТР

Таблица 3.2. Параметры нагрузки

Номер строки ЛН К ТР Эд
PЛН PК cos φК SТР cos φТР PЭД КПД cos φЭД
9 100 400 1 1600 0,5 400 0,74 0,76

3.3. Примечания:
1. Для всех токов и напряжений определить действующее значение и начальную фазу.
2. На схеме замещения изображать активную нагрузку в виде резистора, активно-индуктивную нагрузку в виде последовательного соединения резистора и идеальной индуктивной катушки.
3. Баланс мощностей должен сойтись с погрешностью менее 1%.

Электротехника 300₽
10640




Определение реакций опор составной конструкции (система двух тел)
Найти реакции опор и давление в промежуточном шарнире составной конструкции. Схемы конструкций представлены на рис. 18-20 (размеры в метрах), нагрузка указана в табл. 4.

Вариант G P M, кН∙м q, кН∙м
кН
2 5 8 60 -
Теоретическая механика 300₽
14588




ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
По заданному уравнению поступательного движения груза 1 S = S(t) определить в момент времени t1 угловые скорости и угловые ускорения шкивов 2 и 3, а также скорость, касательное, нормальное и полное ускорение точки М механизма. Схемы механизмов и необходимые для расчета данные представлены на рис. К3.1- К3.20, в табл. 3

№ варианта Уравнение движения груза 1 S = S(t), см R2 r2 R3 r3 t1
К3.15 160t2 50 30 70 40 2
Теоретическая механика K3.15 Теоретическая механика 2 300₽
8590

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Маховик вращается вокруг неподвижной оси по закону φ = At3 + Bt2, где φ задан в радианах, а время t - в секундах; A и B – постоянные коэффициенты. В момент времени t1 = 3 с угловая скорость маховика и его угловое ускорение имели значения ω1 = 72 c-1 и ε = 42 c-2. Определить угловое ускорение маховика, а также скорость и ускорение его точки, отстоящей от оси вращения на 20 см в момент времени t2 = 4 c.

Теоретическая механика K4.13 Теоретическая механика 2 300₽
10894




ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20. Рычаг ABC с осью вращения в точке B, опирающийся в точке D на гладкий цилиндр, испытывает действие груза Q, распределенной нагрузки интенсивности q и пары сил с моментом M. Пренебрегая весом рычага, найти реакции опор, если АВ = 2ВС = 2а; АД = 0,5а. Q = 10 кH; M = 5 кН∙м; a = 2,5 м; q = 2 кH/м.

Теоретическая механика C3.10. Теоретическая механика 2 300₽
11280

КИНЕМАТИКА ТОЧКИ
Точка М движется по окружности радиуса R согласно уравнению S = S(t). Определить и построить для момента времени t1 скорость, касательное, нормальное и полное ускорение этой точки. Исходные данные для расчета приведены в табл. 2.

№ варианта S = S(t), cм R, см Время t1, с
К2.20 2t 4t2 + 3 0,5
Теоретическая механика K2.20 Теоретическая механика 2 300₽
5069




ПРИНЦИП ДАЛАМБЕРА
Тонкий однородный стержень АВ массой m, расположенный в горизонтальной плоскости, вращается с постоянной угловой скоростью ω вокруг вертикальной оси О, с которой он скреплен одинаковыми невесомыми стержнями ОА и ОВ длиной l. Определить реакции этих стержней

Теоретическая механика Д6.6 Теоретическая механика 2 300₽
14606



ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА
Для заданного положения механизма. Найти скорости точек B и C, а также угловую скорость звена, которому принадлежат эти точки. Схемы механизмов и необходимые для расчета данные показаны на рис. K6.5.
OA = 0,35 м; AB = 0,15 м; AC = 0,15 м; r = 0,15 м; ωOA = 3 c-1.

Теоретическая механика K6.5 Теоретическая механика 2 300₽
8606




ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
На рис. К3.5 показана схема механизма, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Кривошип O1А вращается вокруг оси O1 с постоянной угловой скоростью ω1 = ωO1A = 4 с-1. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек A, B, Д, Е, угловые скорости указанных шатунов и кривошипа О2В, а также ускорение точки В.

Теоретическая механика K5.5 Теоретическая механика 2 300₽
16577




Физический маятник представляет собой тонкий однородный стержень длиной l = 1 м и массой m, на котором жестко закреплена материальная точка массой M на расстоянии d (d < l/2) от нижнего конца стержня. Точка подвеса маятника находится на расстоянии x (x < l/2) от верхнего конца стержня (рис. 1). Найти зависимость периода малых колебаний T маятника от расстояния x и построить график этой зависимости T(x) в интервале изменения x от 0 до l/2. Определить по графику минимальное значение периода T колебаний маятника. Ускорение свободного падения g = 9,81 м/c2.

№ варианта d, M/m
11 d = 0,25 м, M/m = 1,5
Механика 300₽
8700




ПРИНЦИП ДАЛАМБЕРА
Тонкий однородный и гладкий диск массой m и радиусом R установлен между валом ОО1 и стержнем АВ, приваренным к валу под углом φ. Стержень и вал вращается вместе с диском с постоянной угловой скоростью ω. Определить давление диска на стержень и вал.

Теоретическая механика Д6.19 Теоретическая механика 2 300₽
10910




ОПРЕДЕЛЕНИЕ РЕАКЦИИ СВЯЗЕЙ ПЛОСКОЙ КОНСТРУКЦИИ
Схемы конструкций построены на рис. СЗ. 1 - С3.20.
Кронштейн ABC, нагруженный силой P, распределенной нагрузкой интенсивностью и парой сил с моментом M, удерживается под углом 45° к горизонту тросом BD. Найти натяжение троса и реакцию шарнира A.
P = 12 кН; q = 15 кН/м; M = 8 кН м; AE = EB = 3 м; EC = 4 м; α = 30°.

Теоретическая механика C3.18. Теоретическая механика 2 300₽
14042




Для определения момента трения в цапфах на вал насажен маховик массой М, радиус инерции маховика равен р. Маховику сообщена начальная угловая скорость ω0; предоставленный самому себе, он остановился через Т[с] . Определить момент трения, считая его постоянным

Теоретическая механика Д5.14 Теоретическая механика 2 300₽
5093

ПЛОСКОПАРАЛЛЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.
На рис. К3.9 показана схема механизма, причем
О1А = L1 = 0,4 м;
АВ = L2 = 1,4 м;
ДE = L3 = 1,2 м;
O2В = L4 = 0,6 м;
АД = ДВ.
Кривошип O1А вращается вокруг оси O1 с постоянной угловой скоростью ω1 = ωOA = 4 с-1. Для заданного положения механизма построить мгновенные центры скоростей шатунов АВ и ДЕ, найти скорости точек А, В, Д, Е, угловые скорости указанных шатунов и кривошипа О2В, а также ускорение точки В.

Теоретическая механика K5.9 Теоретическая механика 2 300₽

Страницы